mdbq 3.8.2__py3-none-any.whl → 3.8.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mdbq/__version__.py +1 -3
- mdbq/aggregation/query_data.py +49 -3
- {mdbq-3.8.2.dist-info → mdbq-3.8.3.dist-info}/METADATA +1 -1
- {mdbq-3.8.2.dist-info → mdbq-3.8.3.dist-info}/RECORD +6 -7
- mdbq/aggregation/optimize_data_bak.py +0 -30
- {mdbq-3.8.2.dist-info → mdbq-3.8.3.dist-info}/WHEEL +0 -0
- {mdbq-3.8.2.dist-info → mdbq-3.8.3.dist-info}/top_level.txt +0 -0
mdbq/__version__.py
CHANGED
mdbq/aggregation/query_data.py
CHANGED
@@ -468,7 +468,7 @@ class MysqlDatasQuery:
|
|
468
468
|
'店铺名称': 1,
|
469
469
|
}
|
470
470
|
__res = []
|
471
|
-
for year in range(
|
471
|
+
for year in range(2025, datetime.datetime.today().year+1):
|
472
472
|
df = self.download.data_to_df(
|
473
473
|
db_name='推广数据_圣积天猫店',
|
474
474
|
table_name=f'主体报表_{year}',
|
@@ -2459,6 +2459,7 @@ class MysqlDatasQuery:
|
|
2459
2459
|
df_tm_living = pd.DataFrame() # 天猫超级直播
|
2460
2460
|
df_jd = pd.DataFrame() # 京东推广
|
2461
2461
|
df_jd_qzyx = pd.DataFrame() # 京东全站推广
|
2462
|
+
df_jd_ziying = pd.DataFrame() # 京东推广
|
2462
2463
|
|
2463
2464
|
start_date, end_date = self.months_data(num=self.months)
|
2464
2465
|
projection = {
|
@@ -2525,7 +2526,7 @@ class MysqlDatasQuery:
|
|
2525
2526
|
)
|
2526
2527
|
# sj圣积
|
2527
2528
|
__res = []
|
2528
|
-
for year in range(
|
2529
|
+
for year in range(2025, datetime.datetime.today().year + 1):
|
2529
2530
|
df_sj = self.download.data_to_df(
|
2530
2531
|
db_name='推广数据_圣积天猫店',
|
2531
2532
|
table_name=f'营销场景报表_{year}',
|
@@ -2783,7 +2784,52 @@ class MysqlDatasQuery:
|
|
2783
2784
|
df_jd_qzyx = df_jd_qzyx[['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量', '成交笔数', '成交金额']]
|
2784
2785
|
df_jd_qzyx = df_jd_qzyx[df_jd_qzyx['花费'] > 0]
|
2785
2786
|
|
2786
|
-
|
2787
|
+
projection = {
|
2788
|
+
'日期': 1,
|
2789
|
+
'产品线': 1,
|
2790
|
+
'触发sku_id': 1,
|
2791
|
+
'跟单sku_id': 1,
|
2792
|
+
'花费': 1,
|
2793
|
+
'展现数': 1,
|
2794
|
+
'点击数': 1,
|
2795
|
+
'直接订单行': 1,
|
2796
|
+
'直接订单金额': 1,
|
2797
|
+
'总订单行': 1,
|
2798
|
+
'总订单金额': 1,
|
2799
|
+
'直接加购数': 1,
|
2800
|
+
'总加购数': 1,
|
2801
|
+
'spu_id': 1,
|
2802
|
+
'店铺名称': 1,
|
2803
|
+
}
|
2804
|
+
__res = []
|
2805
|
+
for year in range(2025, datetime.datetime.today().year + 1):
|
2806
|
+
df_jd_ziying = self.download.data_to_df(
|
2807
|
+
db_name='京东数据3',
|
2808
|
+
table_name=f'推广数据_京准通_自营店_{year}',
|
2809
|
+
start_date=start_date,
|
2810
|
+
end_date=end_date,
|
2811
|
+
projection=projection,
|
2812
|
+
)
|
2813
|
+
__res.append(df_jd_ziying)
|
2814
|
+
df_jd_ziying = pd.concat(__res, ignore_index=True)
|
2815
|
+
if len(df_jd_ziying) > 0:
|
2816
|
+
df_jd_ziying = df_jd_ziying.groupby(
|
2817
|
+
['日期', '店铺名称', '产品线', '触发sku_id', '跟单sku_id', 'spu_id', '花费', '展现数', '点击数'],
|
2818
|
+
as_index=False).agg(
|
2819
|
+
**{
|
2820
|
+
'直接订单行': ('直接订单行', np.max),
|
2821
|
+
'直接订单金额': ('直接订单金额', np.max),
|
2822
|
+
'成交笔数': ('总订单行', np.max),
|
2823
|
+
'成交金额': ('总订单金额', np.max),
|
2824
|
+
'直接加购数': ('直接加购数', np.max),
|
2825
|
+
'加购量': ('总加购数', np.max),
|
2826
|
+
}
|
2827
|
+
)
|
2828
|
+
df_jd_ziying = df_jd_ziying[['日期', '店铺名称', '产品线', '花费', '展现数', '点击数', '加购量', '成交笔数', '成交金额']]
|
2829
|
+
df_jd_ziying.rename(columns={'产品线': '营销场景', '展现数': '展现量', '点击数': '点击量'}, inplace=True)
|
2830
|
+
df_jd_ziying = df_jd_ziying[df_jd_ziying['花费'] > 0]
|
2831
|
+
|
2832
|
+
_datas = [item for item in [df_tm, df_tb, df_tb_qzt, df_al, df_sj, df_tm_pxb, df_tm_living, df_jd, df_jd_qzyx, df_jd_ziying] if len(item) > 0] # 阻止空的 dataframe
|
2787
2833
|
df = pd.concat(_datas, axis=0, ignore_index=True)
|
2788
2834
|
# 超级直播全站推广不包含在营销场景报表中,所以单独添加 2025-03-05
|
2789
2835
|
projection = {
|
@@ -1,8 +1,7 @@
|
|
1
1
|
mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
|
2
|
-
mdbq/__version__.py,sha256=
|
2
|
+
mdbq/__version__.py,sha256=N2YV132Ke9nxG8e_N4DlVVVafsd63H4Sbusd36SCowU,17
|
3
3
|
mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
|
4
|
-
mdbq/aggregation/
|
5
|
-
mdbq/aggregation/query_data.py,sha256=R8KL_tX6kU3Na2Gy-FGzNaGRZEzCl8bptYgOTSXYDpw,178194
|
4
|
+
mdbq/aggregation/query_data.py,sha256=dmLJ0qma2L9HoJuEZ1ha7_mCIWH0gN6hR2HVEgQn0Uw,180343
|
6
5
|
mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
|
7
6
|
mdbq/bdup/bdup.py,sha256=hJs815hGFwm_X5bP2i9XugG2w2ZY_F0n3-Q0hVpIPPw,4892
|
8
7
|
mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
|
@@ -31,7 +30,7 @@ mdbq/redis/__init__.py,sha256=YtgBlVSMDphtpwYX248wGge1x-Ex_mMufz4-8W0XRmA,12
|
|
31
30
|
mdbq/redis/getredis.py,sha256=1pTga2iINx0NV2ffl0D-aspZhrZMDQR8SpohAv1acoo,24076
|
32
31
|
mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
|
33
32
|
mdbq/spider/aikucun.py,sha256=GBZsCjsN3i1ZW9pAxeMAmb-y3yW3p3HJpjfrnnna5gg,19702
|
34
|
-
mdbq-3.8.
|
35
|
-
mdbq-3.8.
|
36
|
-
mdbq-3.8.
|
37
|
-
mdbq-3.8.
|
33
|
+
mdbq-3.8.3.dist-info/METADATA,sha256=B7KoQYy-rPaD3MHQb58QxTYVZZUNAoOaKlxH4IidSE4,363
|
34
|
+
mdbq-3.8.3.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
35
|
+
mdbq-3.8.3.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
|
36
|
+
mdbq-3.8.3.dist-info/RECORD,,
|
@@ -1,30 +0,0 @@
|
|
1
|
-
# -*- coding: UTF-8 –*-
|
2
|
-
from mdbq.mysql import mysql
|
3
|
-
from mdbq.config import default
|
4
|
-
import subprocess
|
5
|
-
import psutil
|
6
|
-
import time
|
7
|
-
import platform
|
8
|
-
import logging
|
9
|
-
"""
|
10
|
-
对指定数据库所有冗余数据进行清理
|
11
|
-
"""
|
12
|
-
targe_host, hostname, local = default.return_default_host()
|
13
|
-
m_engine, username, password, host, port = default.get_mysql_engine(platform='Windows', hostname=hostname, sql='mysql', local=local, config_file=None)
|
14
|
-
if not username:
|
15
|
-
logger.info(f'找不到主机:')
|
16
|
-
|
17
|
-
logger = logging.getLogger(__name__)
|
18
|
-
|
19
|
-
|
20
|
-
def op_data(db_name_lists, days: int = 63, is_mongo=True, is_mysql=True):
|
21
|
-
# Mysql
|
22
|
-
if is_mysql:
|
23
|
-
s = mysql.OptimizeDatas(username=username, password=password, host=host, port=port)
|
24
|
-
s.db_name_lists = db_name_lists
|
25
|
-
s.days = days
|
26
|
-
s.optimize_list()
|
27
|
-
|
28
|
-
|
29
|
-
if __name__ == '__main__':
|
30
|
-
op_data(db_name_lists=['聚合数据'], days=10, is_mongo=True, is_mysql=True)
|
File without changes
|
File without changes
|