mdbq 3.8.13__py3-none-any.whl → 3.8.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mdbq/__version__.py +1 -1
- mdbq/aggregation/query_data.py +0 -64
- mdbq/mysql/mysql.py +171 -528
- {mdbq-3.8.13.dist-info → mdbq-3.8.14.dist-info}/METADATA +1 -1
- {mdbq-3.8.13.dist-info → mdbq-3.8.14.dist-info}/RECORD +7 -7
- {mdbq-3.8.13.dist-info → mdbq-3.8.14.dist-info}/WHEEL +0 -0
- {mdbq-3.8.13.dist-info → mdbq-3.8.14.dist-info}/top_level.txt +0 -0
mdbq/__version__.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
VERSION = '3.8.
|
1
|
+
VERSION = '3.8.14'
|
mdbq/aggregation/query_data.py
CHANGED
@@ -174,10 +174,8 @@ class MysqlDatasQuery:
|
|
174
174
|
# icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
175
175
|
move_insert=True, # 先删除,再插入
|
176
176
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
177
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
178
177
|
count=None,
|
179
178
|
filename=None, # 用来追踪处理进度
|
180
|
-
reset_id=True, # 是否重置自增列
|
181
179
|
set_typ=set_typ,
|
182
180
|
)
|
183
181
|
|
@@ -222,10 +220,8 @@ class MysqlDatasQuery:
|
|
222
220
|
icm_update=['商品id'], # 增量更新, 在聚合数据中使用,其他不要用
|
223
221
|
move_insert=False, # 先删除,再插入
|
224
222
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
225
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
226
223
|
count=None,
|
227
224
|
filename=None, # 用来追踪处理进度
|
228
|
-
reset_id=False, # 是否重置自增列
|
229
225
|
set_typ=set_typ,
|
230
226
|
)
|
231
227
|
return True
|
@@ -333,10 +329,8 @@ class MysqlDatasQuery:
|
|
333
329
|
# icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
334
330
|
move_insert=True, # 先删除,再插入
|
335
331
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
336
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
337
332
|
count=None,
|
338
333
|
filename=None, # 用来追踪处理进度
|
339
|
-
reset_id=True, # 是否重置自增列
|
340
334
|
set_typ=set_typ,
|
341
335
|
)
|
342
336
|
return True
|
@@ -444,10 +438,8 @@ class MysqlDatasQuery:
|
|
444
438
|
# icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
445
439
|
move_insert=True, # 先删除,再插入
|
446
440
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
447
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
448
441
|
count=None,
|
449
442
|
filename=None, # 用来追踪处理进度
|
450
|
-
reset_id=True, # 是否重置自增列
|
451
443
|
set_typ=set_typ,
|
452
444
|
)
|
453
445
|
return True
|
@@ -555,10 +547,8 @@ class MysqlDatasQuery:
|
|
555
547
|
# icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
556
548
|
move_insert=True, # 先删除,再插入
|
557
549
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
558
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
559
550
|
count=None,
|
560
551
|
filename=None, # 用来追踪处理进度
|
561
|
-
reset_id=True, # 是否重置自增列
|
562
552
|
set_typ=set_typ,
|
563
553
|
)
|
564
554
|
return True
|
@@ -652,10 +642,8 @@ class MysqlDatasQuery:
|
|
652
642
|
# icm_update=['日期', '宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
|
653
643
|
move_insert=True, # 先删除,再插入
|
654
644
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
655
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
656
645
|
count=None,
|
657
646
|
filename=None, # 用来追踪处理进度
|
658
|
-
reset_id=True, # 是否重置自增列
|
659
647
|
set_typ=set_typ,
|
660
648
|
)
|
661
649
|
return True
|
@@ -871,10 +859,8 @@ class MysqlDatasQuery:
|
|
871
859
|
# icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '人群名字'], # 增量更新, 在聚合数据中使用,其他不要用
|
872
860
|
move_insert=True, # 先删除,再插入
|
873
861
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
874
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
875
862
|
count=None,
|
876
863
|
filename=None, # 用来追踪处理进度
|
877
|
-
reset_id=True, # 是否重置自增列
|
878
864
|
set_typ=set_typ,
|
879
865
|
)
|
880
866
|
return True
|
@@ -1007,10 +993,8 @@ class MysqlDatasQuery:
|
|
1007
993
|
# icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '词类型', '词名字_词包名字',], # 增量更新, 在聚合数据中使用,其他不要用
|
1008
994
|
move_insert=True, # 先删除,再插入
|
1009
995
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1010
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1011
996
|
count=None,
|
1012
997
|
filename=None, # 用来追踪处理进度
|
1013
|
-
reset_id=True, # 是否重置自增列
|
1014
998
|
set_typ=set_typ,
|
1015
999
|
)
|
1016
1000
|
return True
|
@@ -1180,10 +1164,8 @@ class MysqlDatasQuery:
|
|
1180
1164
|
# icm_update=['日期', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
1181
1165
|
move_insert=True, # 先删除,再插入
|
1182
1166
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1183
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1184
1167
|
count=None,
|
1185
1168
|
filename=None, # 用来追踪处理进度
|
1186
|
-
reset_id=True, # 是否重置自增列
|
1187
1169
|
set_typ=set_typ,
|
1188
1170
|
)
|
1189
1171
|
return True
|
@@ -1293,10 +1275,8 @@ class MysqlDatasQuery:
|
|
1293
1275
|
# icm_update=['日期', '报表类型', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
1294
1276
|
move_insert=True, # 先删除,再插入
|
1295
1277
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1296
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1297
1278
|
count=None,
|
1298
1279
|
filename=None, # 用来追踪处理进度
|
1299
|
-
reset_id=True, # 是否重置自增列
|
1300
1280
|
set_typ=set_typ,
|
1301
1281
|
)
|
1302
1282
|
return True
|
@@ -1350,10 +1330,8 @@ class MysqlDatasQuery:
|
|
1350
1330
|
icm_update=['宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
|
1351
1331
|
move_insert=False, # 先删除,再插入
|
1352
1332
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1353
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1354
1333
|
count=None,
|
1355
1334
|
filename=None, # 用来追踪处理进度
|
1356
|
-
reset_id=True, # 是否重置自增列
|
1357
1335
|
set_typ=set_typ,
|
1358
1336
|
)
|
1359
1337
|
return True
|
@@ -1407,10 +1385,8 @@ class MysqlDatasQuery:
|
|
1407
1385
|
icm_update=['宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
|
1408
1386
|
move_insert=False, # 先删除,再插入
|
1409
1387
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1410
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1411
1388
|
count=None,
|
1412
1389
|
filename=None, # 用来追踪处理进度
|
1413
|
-
reset_id=True, # 是否重置自增列
|
1414
1390
|
set_typ=set_typ,
|
1415
1391
|
)
|
1416
1392
|
return True
|
@@ -1464,10 +1440,8 @@ class MysqlDatasQuery:
|
|
1464
1440
|
icm_update=['商品id'], # 增量更新, 在聚合数据中使用,其他不要用
|
1465
1441
|
move_insert=False, # 先删除,再插入
|
1466
1442
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1467
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1468
1443
|
count=None,
|
1469
1444
|
filename=None, # 用来追踪处理进度
|
1470
|
-
reset_id=False, # 是否重置自增列
|
1471
1445
|
set_typ=set_typ,
|
1472
1446
|
)
|
1473
1447
|
return True
|
@@ -1523,10 +1497,8 @@ class MysqlDatasQuery:
|
|
1523
1497
|
icm_update=['sku_id'], # 增量更新, 在聚合数据中使用,其他不要用
|
1524
1498
|
move_insert=False, # 先删除,再插入
|
1525
1499
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1526
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1527
1500
|
count=None,
|
1528
1501
|
filename=None, # 用来追踪处理进度
|
1529
|
-
reset_id=False, # 是否重置自增列
|
1530
1502
|
set_typ=set_typ,
|
1531
1503
|
)
|
1532
1504
|
return True
|
@@ -1587,10 +1559,8 @@ class MysqlDatasQuery:
|
|
1587
1559
|
# icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
|
1588
1560
|
move_insert=True, # 先删除,再插入
|
1589
1561
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1590
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1591
1562
|
count=None,
|
1592
1563
|
filename=None, # 用来追踪处理进度
|
1593
|
-
reset_id=True, # 是否重置自增列
|
1594
1564
|
set_typ=set_typ,
|
1595
1565
|
)
|
1596
1566
|
|
@@ -1714,10 +1684,8 @@ class MysqlDatasQuery:
|
|
1714
1684
|
# icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
|
1715
1685
|
move_insert=True, # 先删除,再插入
|
1716
1686
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1717
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1718
1687
|
count=None,
|
1719
1688
|
filename=None, # 用来追踪处理进度
|
1720
|
-
reset_id=True, # 是否重置自增列
|
1721
1689
|
set_typ=set_typ,
|
1722
1690
|
)
|
1723
1691
|
|
@@ -1824,10 +1792,8 @@ class MysqlDatasQuery:
|
|
1824
1792
|
# icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
|
1825
1793
|
move_insert=True, # 先删除,再插入
|
1826
1794
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1827
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1828
1795
|
count=None,
|
1829
1796
|
filename=None, # 用来追踪处理进度
|
1830
|
-
reset_id=True, # 是否重置自增列
|
1831
1797
|
set_typ=set_typ,
|
1832
1798
|
)
|
1833
1799
|
return True
|
@@ -1871,10 +1837,8 @@ class MysqlDatasQuery:
|
|
1871
1837
|
icm_update=['款号'], # 增量更新, 在聚合数据中使用,其他不要用
|
1872
1838
|
move_insert=False, # 先删除,再插入
|
1873
1839
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1874
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1875
1840
|
count=None,
|
1876
1841
|
filename=None, # 用来追踪处理进度
|
1877
|
-
reset_id=False, # 是否重置自增列
|
1878
1842
|
set_typ=set_typ,
|
1879
1843
|
)
|
1880
1844
|
return True
|
@@ -1987,10 +1951,8 @@ class MysqlDatasQuery:
|
|
1987
1951
|
# icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
|
1988
1952
|
move_insert=True, # 先删除,再插入
|
1989
1953
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1990
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1991
1954
|
count=None,
|
1992
1955
|
filename=None, # 用来追踪处理进度
|
1993
|
-
reset_id=True, # 是否重置自增列
|
1994
1956
|
set_typ=set_typ,
|
1995
1957
|
)
|
1996
1958
|
return True
|
@@ -2056,10 +2018,8 @@ class MysqlDatasQuery:
|
|
2056
2018
|
# icm_update=['日期', '产品线', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
2057
2019
|
move_insert=True, # 先删除,再插入
|
2058
2020
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
2059
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
2060
2021
|
count=None,
|
2061
2022
|
filename=None, # 用来追踪处理进度
|
2062
|
-
reset_id=True, # 是否重置自增列
|
2063
2023
|
set_typ=set_typ
|
2064
2024
|
)
|
2065
2025
|
return True
|
@@ -2157,10 +2117,8 @@ class MysqlDatasQuery:
|
|
2157
2117
|
# icm_update=['日期', '产品线', '搜索词', '关键词', '展现数', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
2158
2118
|
move_insert=True, # 先删除,再插入
|
2159
2119
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
2160
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
2161
2120
|
count=None,
|
2162
2121
|
filename=None, # 用来追踪处理进度
|
2163
|
-
reset_id=True, # 是否重置自增列
|
2164
2122
|
set_typ=set_typ
|
2165
2123
|
)
|
2166
2124
|
return True
|
@@ -2236,10 +2194,8 @@ class MysqlDatasQuery:
|
|
2236
2194
|
# icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
|
2237
2195
|
move_insert=True, # 先删除,再插入
|
2238
2196
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
2239
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
2240
2197
|
count=None,
|
2241
2198
|
filename=None, # 用来追踪处理进度
|
2242
|
-
reset_id=True, # 是否重置自增列
|
2243
2199
|
set_typ=set_typ,
|
2244
2200
|
)
|
2245
2201
|
return True
|
@@ -2307,10 +2263,8 @@ class MysqlDatasQuery:
|
|
2307
2263
|
# icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
|
2308
2264
|
move_insert=True, # 先删除,再插入
|
2309
2265
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
2310
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
2311
2266
|
count=None,
|
2312
2267
|
filename=None, # 用来追踪处理进度
|
2313
|
-
reset_id=True, # 是否重置自增列
|
2314
2268
|
set_typ=set_typ
|
2315
2269
|
)
|
2316
2270
|
return True
|
@@ -2395,10 +2349,8 @@ class MysqlDatasQuery:
|
|
2395
2349
|
# icm_update=['日期', '店铺名称', '词类型', '搜索词'], # 增量更新, 在聚合数据中使用,其他不要用
|
2396
2350
|
move_insert=True, # 先删除,再插入
|
2397
2351
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
2398
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
2399
2352
|
count=None,
|
2400
2353
|
filename=None, # 用来追踪处理进度
|
2401
|
-
reset_id=True, # 是否重置自增列
|
2402
2354
|
set_typ=set_typ,
|
2403
2355
|
)
|
2404
2356
|
return True
|
@@ -2568,9 +2520,7 @@ class MysqlDatasQuery:
|
|
2568
2520
|
db_name=db_name,
|
2569
2521
|
table_name=table_name,
|
2570
2522
|
dict_data_list=_results,
|
2571
|
-
unique_main_key=None,
|
2572
2523
|
icm_update=['场次id'], # 唯一组合键
|
2573
|
-
main_key=None, # 指定索引列, 通常用日期列,默认会设置日期为索引
|
2574
2524
|
set_typ=set_typ, # 指定数据类型
|
2575
2525
|
)
|
2576
2526
|
return True
|
@@ -3035,10 +2985,8 @@ class MysqlDatasQuery:
|
|
3035
2985
|
# icm_update=['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量'], # 增量更新, 在聚合数据中使用,其他不要用
|
3036
2986
|
move_insert=True, # 先删除,再插入
|
3037
2987
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
3038
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
3039
2988
|
count=None,
|
3040
2989
|
filename=None, # 用来追踪处理进度
|
3041
|
-
reset_id=True, # 是否重置自增列
|
3042
2990
|
set_typ=set_typ
|
3043
2991
|
)
|
3044
2992
|
return True
|
@@ -3127,10 +3075,8 @@ class MysqlDatasQuery:
|
|
3127
3075
|
icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
|
3128
3076
|
move_insert=True, # 先删除,再插入
|
3129
3077
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
3130
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
3131
3078
|
count=None,
|
3132
3079
|
filename=None, # 用来追踪处理进度
|
3133
|
-
reset_id=True, # 是否重置自增列
|
3134
3080
|
set_typ=set_typ
|
3135
3081
|
)
|
3136
3082
|
return True
|
@@ -3179,10 +3125,8 @@ class MysqlDatasQuery:
|
|
3179
3125
|
# icm_update=['日期', '人群类型', '店铺名称', '人群规模', '广告投入金额'], # 增量更新, 在聚合数据中使用,其他不要用
|
3180
3126
|
move_insert=True, # 先删除,再插入
|
3181
3127
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
3182
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
3183
3128
|
count=None,
|
3184
3129
|
filename=None, # 用来追踪处理进度
|
3185
|
-
reset_id=True, # 是否重置自增列
|
3186
3130
|
set_typ=set_typ
|
3187
3131
|
)
|
3188
3132
|
return True
|
@@ -3291,10 +3235,8 @@ class MysqlDatasQuery:
|
|
3291
3235
|
icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
|
3292
3236
|
move_insert=True, # 先删除,再插入
|
3293
3237
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
3294
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
3295
3238
|
count=None,
|
3296
3239
|
filename=None, # 用来追踪处理进度
|
3297
|
-
reset_id=True, # 是否重置自增列
|
3298
3240
|
set_typ=set_typ,
|
3299
3241
|
)
|
3300
3242
|
return True
|
@@ -3695,10 +3637,8 @@ class MysqlDatasQuery:
|
|
3695
3637
|
icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
|
3696
3638
|
move_insert=True, # 先删除,再插入
|
3697
3639
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
3698
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
3699
3640
|
count=None,
|
3700
3641
|
filename=None, # 用来追踪处理进度
|
3701
|
-
reset_id=True, # 是否重置自增列
|
3702
3642
|
set_typ=set_typ,
|
3703
3643
|
)
|
3704
3644
|
return True
|
@@ -3798,10 +3738,8 @@ class MysqlDatasQuery:
|
|
3798
3738
|
icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
|
3799
3739
|
move_insert=True, # 先删除,再插入
|
3800
3740
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
3801
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
3802
3741
|
count=None,
|
3803
3742
|
filename=None, # 用来追踪处理进度
|
3804
|
-
reset_id=True, # 是否重置自增列
|
3805
3743
|
set_typ=set_typ,
|
3806
3744
|
)
|
3807
3745
|
return True
|
@@ -3869,10 +3807,8 @@ class MysqlDatasQuery:
|
|
3869
3807
|
icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
|
3870
3808
|
move_insert=True, # 先删除,再插入
|
3871
3809
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
3872
|
-
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
3873
3810
|
count=None,
|
3874
3811
|
filename=None, # 用来追踪处理进度
|
3875
|
-
reset_id=True, # 是否重置自增列
|
3876
3812
|
set_typ=set_typ,
|
3877
3813
|
)
|
3878
3814
|
return True
|