mdbq 3.8.13__py3-none-any.whl → 3.8.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mdbq/__version__.py CHANGED
@@ -1 +1 @@
1
- VERSION = '3.8.13'
1
+ VERSION = '3.8.14'
@@ -174,10 +174,8 @@ class MysqlDatasQuery:
174
174
  # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
175
175
  move_insert=True, # 先删除,再插入
176
176
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
177
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
178
177
  count=None,
179
178
  filename=None, # 用来追踪处理进度
180
- reset_id=True, # 是否重置自增列
181
179
  set_typ=set_typ,
182
180
  )
183
181
 
@@ -222,10 +220,8 @@ class MysqlDatasQuery:
222
220
  icm_update=['商品id'], # 增量更新, 在聚合数据中使用,其他不要用
223
221
  move_insert=False, # 先删除,再插入
224
222
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
225
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
226
223
  count=None,
227
224
  filename=None, # 用来追踪处理进度
228
- reset_id=False, # 是否重置自增列
229
225
  set_typ=set_typ,
230
226
  )
231
227
  return True
@@ -333,10 +329,8 @@ class MysqlDatasQuery:
333
329
  # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
334
330
  move_insert=True, # 先删除,再插入
335
331
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
336
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
337
332
  count=None,
338
333
  filename=None, # 用来追踪处理进度
339
- reset_id=True, # 是否重置自增列
340
334
  set_typ=set_typ,
341
335
  )
342
336
  return True
@@ -444,10 +438,8 @@ class MysqlDatasQuery:
444
438
  # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
445
439
  move_insert=True, # 先删除,再插入
446
440
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
447
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
448
441
  count=None,
449
442
  filename=None, # 用来追踪处理进度
450
- reset_id=True, # 是否重置自增列
451
443
  set_typ=set_typ,
452
444
  )
453
445
  return True
@@ -555,10 +547,8 @@ class MysqlDatasQuery:
555
547
  # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
556
548
  move_insert=True, # 先删除,再插入
557
549
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
558
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
559
550
  count=None,
560
551
  filename=None, # 用来追踪处理进度
561
- reset_id=True, # 是否重置自增列
562
552
  set_typ=set_typ,
563
553
  )
564
554
  return True
@@ -652,10 +642,8 @@ class MysqlDatasQuery:
652
642
  # icm_update=['日期', '宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
653
643
  move_insert=True, # 先删除,再插入
654
644
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
655
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
656
645
  count=None,
657
646
  filename=None, # 用来追踪处理进度
658
- reset_id=True, # 是否重置自增列
659
647
  set_typ=set_typ,
660
648
  )
661
649
  return True
@@ -871,10 +859,8 @@ class MysqlDatasQuery:
871
859
  # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '人群名字'], # 增量更新, 在聚合数据中使用,其他不要用
872
860
  move_insert=True, # 先删除,再插入
873
861
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
874
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
875
862
  count=None,
876
863
  filename=None, # 用来追踪处理进度
877
- reset_id=True, # 是否重置自增列
878
864
  set_typ=set_typ,
879
865
  )
880
866
  return True
@@ -1007,10 +993,8 @@ class MysqlDatasQuery:
1007
993
  # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '词类型', '词名字_词包名字',], # 增量更新, 在聚合数据中使用,其他不要用
1008
994
  move_insert=True, # 先删除,再插入
1009
995
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1010
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1011
996
  count=None,
1012
997
  filename=None, # 用来追踪处理进度
1013
- reset_id=True, # 是否重置自增列
1014
998
  set_typ=set_typ,
1015
999
  )
1016
1000
  return True
@@ -1180,10 +1164,8 @@ class MysqlDatasQuery:
1180
1164
  # icm_update=['日期', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
1181
1165
  move_insert=True, # 先删除,再插入
1182
1166
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1183
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1184
1167
  count=None,
1185
1168
  filename=None, # 用来追踪处理进度
1186
- reset_id=True, # 是否重置自增列
1187
1169
  set_typ=set_typ,
1188
1170
  )
1189
1171
  return True
@@ -1293,10 +1275,8 @@ class MysqlDatasQuery:
1293
1275
  # icm_update=['日期', '报表类型', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
1294
1276
  move_insert=True, # 先删除,再插入
1295
1277
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1296
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1297
1278
  count=None,
1298
1279
  filename=None, # 用来追踪处理进度
1299
- reset_id=True, # 是否重置自增列
1300
1280
  set_typ=set_typ,
1301
1281
  )
1302
1282
  return True
@@ -1350,10 +1330,8 @@ class MysqlDatasQuery:
1350
1330
  icm_update=['宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
1351
1331
  move_insert=False, # 先删除,再插入
1352
1332
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1353
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1354
1333
  count=None,
1355
1334
  filename=None, # 用来追踪处理进度
1356
- reset_id=True, # 是否重置自增列
1357
1335
  set_typ=set_typ,
1358
1336
  )
1359
1337
  return True
@@ -1407,10 +1385,8 @@ class MysqlDatasQuery:
1407
1385
  icm_update=['宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
1408
1386
  move_insert=False, # 先删除,再插入
1409
1387
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1410
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1411
1388
  count=None,
1412
1389
  filename=None, # 用来追踪处理进度
1413
- reset_id=True, # 是否重置自增列
1414
1390
  set_typ=set_typ,
1415
1391
  )
1416
1392
  return True
@@ -1464,10 +1440,8 @@ class MysqlDatasQuery:
1464
1440
  icm_update=['商品id'], # 增量更新, 在聚合数据中使用,其他不要用
1465
1441
  move_insert=False, # 先删除,再插入
1466
1442
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1467
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1468
1443
  count=None,
1469
1444
  filename=None, # 用来追踪处理进度
1470
- reset_id=False, # 是否重置自增列
1471
1445
  set_typ=set_typ,
1472
1446
  )
1473
1447
  return True
@@ -1523,10 +1497,8 @@ class MysqlDatasQuery:
1523
1497
  icm_update=['sku_id'], # 增量更新, 在聚合数据中使用,其他不要用
1524
1498
  move_insert=False, # 先删除,再插入
1525
1499
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1526
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1527
1500
  count=None,
1528
1501
  filename=None, # 用来追踪处理进度
1529
- reset_id=False, # 是否重置自增列
1530
1502
  set_typ=set_typ,
1531
1503
  )
1532
1504
  return True
@@ -1587,10 +1559,8 @@ class MysqlDatasQuery:
1587
1559
  # icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1588
1560
  move_insert=True, # 先删除,再插入
1589
1561
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1590
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1591
1562
  count=None,
1592
1563
  filename=None, # 用来追踪处理进度
1593
- reset_id=True, # 是否重置自增列
1594
1564
  set_typ=set_typ,
1595
1565
  )
1596
1566
 
@@ -1714,10 +1684,8 @@ class MysqlDatasQuery:
1714
1684
  # icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1715
1685
  move_insert=True, # 先删除,再插入
1716
1686
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1717
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1718
1687
  count=None,
1719
1688
  filename=None, # 用来追踪处理进度
1720
- reset_id=True, # 是否重置自增列
1721
1689
  set_typ=set_typ,
1722
1690
  )
1723
1691
 
@@ -1824,10 +1792,8 @@ class MysqlDatasQuery:
1824
1792
  # icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1825
1793
  move_insert=True, # 先删除,再插入
1826
1794
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1827
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1828
1795
  count=None,
1829
1796
  filename=None, # 用来追踪处理进度
1830
- reset_id=True, # 是否重置自增列
1831
1797
  set_typ=set_typ,
1832
1798
  )
1833
1799
  return True
@@ -1871,10 +1837,8 @@ class MysqlDatasQuery:
1871
1837
  icm_update=['款号'], # 增量更新, 在聚合数据中使用,其他不要用
1872
1838
  move_insert=False, # 先删除,再插入
1873
1839
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1874
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1875
1840
  count=None,
1876
1841
  filename=None, # 用来追踪处理进度
1877
- reset_id=False, # 是否重置自增列
1878
1842
  set_typ=set_typ,
1879
1843
  )
1880
1844
  return True
@@ -1987,10 +1951,8 @@ class MysqlDatasQuery:
1987
1951
  # icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
1988
1952
  move_insert=True, # 先删除,再插入
1989
1953
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1990
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1991
1954
  count=None,
1992
1955
  filename=None, # 用来追踪处理进度
1993
- reset_id=True, # 是否重置自增列
1994
1956
  set_typ=set_typ,
1995
1957
  )
1996
1958
  return True
@@ -2056,10 +2018,8 @@ class MysqlDatasQuery:
2056
2018
  # icm_update=['日期', '产品线', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
2057
2019
  move_insert=True, # 先删除,再插入
2058
2020
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2059
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2060
2021
  count=None,
2061
2022
  filename=None, # 用来追踪处理进度
2062
- reset_id=True, # 是否重置自增列
2063
2023
  set_typ=set_typ
2064
2024
  )
2065
2025
  return True
@@ -2157,10 +2117,8 @@ class MysqlDatasQuery:
2157
2117
  # icm_update=['日期', '产品线', '搜索词', '关键词', '展现数', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
2158
2118
  move_insert=True, # 先删除,再插入
2159
2119
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2160
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2161
2120
  count=None,
2162
2121
  filename=None, # 用来追踪处理进度
2163
- reset_id=True, # 是否重置自增列
2164
2122
  set_typ=set_typ
2165
2123
  )
2166
2124
  return True
@@ -2236,10 +2194,8 @@ class MysqlDatasQuery:
2236
2194
  # icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
2237
2195
  move_insert=True, # 先删除,再插入
2238
2196
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2239
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2240
2197
  count=None,
2241
2198
  filename=None, # 用来追踪处理进度
2242
- reset_id=True, # 是否重置自增列
2243
2199
  set_typ=set_typ,
2244
2200
  )
2245
2201
  return True
@@ -2307,10 +2263,8 @@ class MysqlDatasQuery:
2307
2263
  # icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
2308
2264
  move_insert=True, # 先删除,再插入
2309
2265
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2310
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2311
2266
  count=None,
2312
2267
  filename=None, # 用来追踪处理进度
2313
- reset_id=True, # 是否重置自增列
2314
2268
  set_typ=set_typ
2315
2269
  )
2316
2270
  return True
@@ -2395,10 +2349,8 @@ class MysqlDatasQuery:
2395
2349
  # icm_update=['日期', '店铺名称', '词类型', '搜索词'], # 增量更新, 在聚合数据中使用,其他不要用
2396
2350
  move_insert=True, # 先删除,再插入
2397
2351
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2398
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2399
2352
  count=None,
2400
2353
  filename=None, # 用来追踪处理进度
2401
- reset_id=True, # 是否重置自增列
2402
2354
  set_typ=set_typ,
2403
2355
  )
2404
2356
  return True
@@ -2568,9 +2520,7 @@ class MysqlDatasQuery:
2568
2520
  db_name=db_name,
2569
2521
  table_name=table_name,
2570
2522
  dict_data_list=_results,
2571
- unique_main_key=None,
2572
2523
  icm_update=['场次id'], # 唯一组合键
2573
- main_key=None, # 指定索引列, 通常用日期列,默认会设置日期为索引
2574
2524
  set_typ=set_typ, # 指定数据类型
2575
2525
  )
2576
2526
  return True
@@ -3035,10 +2985,8 @@ class MysqlDatasQuery:
3035
2985
  # icm_update=['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量'], # 增量更新, 在聚合数据中使用,其他不要用
3036
2986
  move_insert=True, # 先删除,再插入
3037
2987
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3038
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3039
2988
  count=None,
3040
2989
  filename=None, # 用来追踪处理进度
3041
- reset_id=True, # 是否重置自增列
3042
2990
  set_typ=set_typ
3043
2991
  )
3044
2992
  return True
@@ -3127,10 +3075,8 @@ class MysqlDatasQuery:
3127
3075
  icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3128
3076
  move_insert=True, # 先删除,再插入
3129
3077
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3130
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3131
3078
  count=None,
3132
3079
  filename=None, # 用来追踪处理进度
3133
- reset_id=True, # 是否重置自增列
3134
3080
  set_typ=set_typ
3135
3081
  )
3136
3082
  return True
@@ -3179,10 +3125,8 @@ class MysqlDatasQuery:
3179
3125
  # icm_update=['日期', '人群类型', '店铺名称', '人群规模', '广告投入金额'], # 增量更新, 在聚合数据中使用,其他不要用
3180
3126
  move_insert=True, # 先删除,再插入
3181
3127
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3182
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3183
3128
  count=None,
3184
3129
  filename=None, # 用来追踪处理进度
3185
- reset_id=True, # 是否重置自增列
3186
3130
  set_typ=set_typ
3187
3131
  )
3188
3132
  return True
@@ -3291,10 +3235,8 @@ class MysqlDatasQuery:
3291
3235
  icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3292
3236
  move_insert=True, # 先删除,再插入
3293
3237
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3294
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3295
3238
  count=None,
3296
3239
  filename=None, # 用来追踪处理进度
3297
- reset_id=True, # 是否重置自增列
3298
3240
  set_typ=set_typ,
3299
3241
  )
3300
3242
  return True
@@ -3695,10 +3637,8 @@ class MysqlDatasQuery:
3695
3637
  icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3696
3638
  move_insert=True, # 先删除,再插入
3697
3639
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3698
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3699
3640
  count=None,
3700
3641
  filename=None, # 用来追踪处理进度
3701
- reset_id=True, # 是否重置自增列
3702
3642
  set_typ=set_typ,
3703
3643
  )
3704
3644
  return True
@@ -3798,10 +3738,8 @@ class MysqlDatasQuery:
3798
3738
  icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3799
3739
  move_insert=True, # 先删除,再插入
3800
3740
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3801
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3802
3741
  count=None,
3803
3742
  filename=None, # 用来追踪处理进度
3804
- reset_id=True, # 是否重置自增列
3805
3743
  set_typ=set_typ,
3806
3744
  )
3807
3745
  return True
@@ -3869,10 +3807,8 @@ class MysqlDatasQuery:
3869
3807
  icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3870
3808
  move_insert=True, # 先删除,再插入
3871
3809
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3872
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3873
3810
  count=None,
3874
3811
  filename=None, # 用来追踪处理进度
3875
- reset_id=True, # 是否重置自增列
3876
3812
  set_typ=set_typ,
3877
3813
  )
3878
3814
  return True