mdbq 3.7.2__py3-none-any.whl → 3.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -456,6 +456,117 @@ class MysqlDatasQuery:
456
456
  )
457
457
  return True
458
458
 
459
+ def _sj_wxt(self, db_name='聚合数据', table_name='圣积天猫店_主体报表', is_maximize=True):
460
+ start_date, end_date = self.months_data(num=self.months)
461
+ projection = {
462
+ '日期': 1,
463
+ '场景名字': 1,
464
+ '主体id': 1,
465
+ '花费': 1,
466
+ '展现量': 1,
467
+ '点击量': 1,
468
+ '总购物车数': 1,
469
+ '总成交笔数': 1,
470
+ '总成交金额': 1,
471
+ '自然流量曝光量': 1,
472
+ '直接成交笔数': 1,
473
+ '直接成交金额': 1,
474
+ '店铺名称': 1,
475
+ }
476
+ __res = []
477
+ for year in range(2024, datetime.datetime.today().year+1):
478
+ df = self.download.data_to_df(
479
+ db_name='推广数据_圣积天猫店',
480
+ table_name=f'主体报表_{year}',
481
+ start_date=start_date,
482
+ end_date=end_date,
483
+ projection=projection,
484
+ )
485
+ __res.append(df)
486
+ df = pd.concat(__res, ignore_index=True)
487
+ df.rename(columns={
488
+ '场景名字': '营销场景',
489
+ '主体id': '商品id',
490
+ '总购物车数': '加购量',
491
+ '总成交笔数': '成交笔数',
492
+ '总成交金额': '成交金额'
493
+ }, inplace=True)
494
+ df = df.astype({
495
+ '商品id': str,
496
+ '花费': 'float64',
497
+ '展现量': 'int64',
498
+ '点击量': 'int64',
499
+ '加购量': 'int64',
500
+ '成交笔数': 'int64',
501
+ '成交金额': 'float64',
502
+ '自然流量曝光量': 'int64',
503
+ '直接成交笔数': 'int64',
504
+ '直接成交金额': 'float64',
505
+ }, errors='raise')
506
+ df = df[df['花费'] > 0]
507
+ if is_maximize:
508
+ df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '点击量'], as_index=False).agg(
509
+ **{
510
+ '展现量': ('展现量', np.max),
511
+ '加购量': ('加购量', np.max),
512
+ '成交笔数': ('成交笔数', np.max),
513
+ '成交金额': ('成交金额', np.max),
514
+ '自然流量曝光量': ('自然流量曝光量', np.max),
515
+ '直接成交笔数': ('直接成交笔数', np.max),
516
+ '直接成交金额': ('直接成交金额', np.max)
517
+ }
518
+ )
519
+ else:
520
+ df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '点击量'], as_index=False).agg(
521
+ **{
522
+ '展现量': ('展现量', np.min),
523
+ '加购量': ('加购量', np.min),
524
+ '成交笔数': ('成交笔数', np.min),
525
+ '成交金额': ('成交金额', np.min),
526
+ '自然流量曝光量': ('自然流量曝光量', np.min),
527
+ '直接成交笔数': ('直接成交笔数', np.max),
528
+ '直接成交金额': ('直接成交金额', np.max)
529
+ }
530
+ )
531
+ df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
532
+ set_typ = {
533
+ '日期': 'date',
534
+ '推广渠道': 'varchar(100)',
535
+ '店铺名称': 'varchar(100)',
536
+ '营销场景': 'varchar(100)',
537
+ '商品id': 'bigint',
538
+ '花费': 'decimal(12,2)',
539
+ '展现量': 'int',
540
+ '点击量': 'int',
541
+ '加购量': 'int',
542
+ '成交笔数': 'int',
543
+ '成交金额': 'decimal(12,2)',
544
+ '自然流量曝光量': 'int',
545
+ '直接成交笔数': 'int',
546
+ '直接成交金额': 'decimal(12,2)',
547
+ }
548
+
549
+ if not self.update_service:
550
+ return
551
+ min_date = df['日期'].min()
552
+ max_date = df['日期'].max()
553
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
554
+ logger.info(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
555
+ m_engine.df_to_mysql(
556
+ df=df,
557
+ db_name=db_name,
558
+ table_name=table_name,
559
+ # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
560
+ move_insert=True, # 先删除,再插入
561
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
562
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
563
+ count=None,
564
+ filename=None, # 用来追踪处理进度
565
+ reset_id=True, # 是否重置自增列
566
+ set_typ=set_typ,
567
+ )
568
+ return True
569
+
459
570
  @try_except
460
571
  def syj(self, db_name='聚合数据', table_name='生意经_宝贝指标'):
461
572
  start_date, end_date = self.months_data(num=self.months)
@@ -2366,6 +2477,32 @@ class MysqlDatasQuery:
2366
2477
  '成交金额': ('总成交金额', np.max)
2367
2478
  }
2368
2479
  )
2480
+ # sj圣积
2481
+ __res = []
2482
+ for year in range(2024, datetime.datetime.today().year + 1):
2483
+ df_sj = self.download.data_to_df(
2484
+ db_name='推广数据_圣积天猫店',
2485
+ table_name=f'营销场景报表_{year}',
2486
+ start_date=start_date,
2487
+ end_date=end_date,
2488
+ projection=projection,
2489
+ )
2490
+ __res.append(df_sj)
2491
+ df_sj = pd.concat(__res, ignore_index=True)
2492
+ if len(df_sj) > 0:
2493
+ df_sj.rename(columns={'场景名字': '营销场景'}, inplace=True)
2494
+ df_sj['店铺名称'] = df_sj['店铺名称'].apply(lambda x: 'saintJack旗舰店' if x == 'SAINTJACK旗舰店' else x)
2495
+ df_sj = df_sj.groupby(
2496
+ ['日期', '店铺名称', '场景id', '营销场景', '花费', '展现量'],
2497
+ as_index=False).agg(
2498
+ **{
2499
+ # '展现量': ('展现量', np.max),
2500
+ '点击量': ('点击量', np.max),
2501
+ '加购量': ('总购物车数', np.max),
2502
+ '成交笔数': ('总成交笔数', np.max),
2503
+ '成交金额': ('总成交金额', np.max)
2504
+ }
2505
+ )
2369
2506
  # 淘宝店
2370
2507
  __res = []
2371
2508
  for year in range(2024, datetime.datetime.today().year + 1):
@@ -2600,7 +2737,7 @@ class MysqlDatasQuery:
2600
2737
  df_jd_qzyx = df_jd_qzyx[['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量', '成交笔数', '成交金额']]
2601
2738
  df_jd_qzyx = df_jd_qzyx[df_jd_qzyx['花费'] > 0]
2602
2739
 
2603
- _datas = [item for item in [df_tm, df_tb, df_tb_qzt, df_al, df_tm_pxb, df_tm_living, df_jd, df_jd_qzyx] if len(item) > 0] # 阻止空的 dataframe
2740
+ _datas = [item for item in [df_tm, df_tb, df_tb_qzt, df_al, df_sj, df_tm_pxb, df_tm_living, df_jd, df_jd_qzyx] if len(item) > 0] # 阻止空的 dataframe
2604
2741
  df = pd.concat(_datas, axis=0, ignore_index=True)
2605
2742
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore') # 转换日期列
2606
2743
  df = df.groupby(
@@ -3604,6 +3741,7 @@ def query1(months=1, less_dict=[]):
3604
3741
  sdq.update_service = True # 调试时加,true: 将数据写入 mysql 服务器
3605
3742
 
3606
3743
  sdq._ald_wxt(db_name='聚合数据', table_name='奥莱店_主体报表')
3744
+ sdq._sj_wxt(db_name='聚合数据', table_name='圣积天猫店_主体报表')
3607
3745
  sdq._tb_wxt(db_name='聚合数据', table_name='淘宝_主体报表')
3608
3746
  sdq.tg_wxt(db_name='聚合数据', table_name='天猫_主体报表')
3609
3747
  sdq.syj(db_name='聚合数据', table_name='生意经_宝贝指标')
@@ -5,7 +5,10 @@ import os
5
5
  import getpass
6
6
 
7
7
 
8
- def setup_logging():
8
+ def setup_logging(reMoveOldHandler=True):
9
+ """
10
+ reMoveOldHandler: 替换根日志记录器的所有现有处理器
11
+ """
9
12
  if platform.system() == 'Windows':
10
13
  from mdbq.pbix import refresh_all
11
14
  D_PATH = os.path.join(f'C:\\Users\\{getpass.getuser()}\\Downloads')
@@ -38,6 +41,10 @@ def setup_logging():
38
41
 
39
42
  # 获取根日志记录器并添加Handler
40
43
  logger = logging.getLogger()
44
+ if reMoveOldHandler:
45
+ # 移除根日志记录器的所有现有处理器
46
+ for handler in logger.handlers[:]: # 使用[:]来创建handlers列表的一个副本,因为我们在迭代时修改列表
47
+ logger.removeHandler(handler)
41
48
  logger.addHandler(file_handler)
42
49
  logger.addHandler(stream_handler)
43
50
  logger.setLevel(logging.INFO) # 设置根日志级别
@@ -979,7 +979,7 @@ if __name__ == '__main__':
979
979
  password=password,
980
980
  host=host,
981
981
  port=port,
982
- heads=30,
982
+ heads=100,
983
983
  col_name='白底图',
984
984
  save_path=os.path.join(upload_path, '商品id_商家编码_图片'),
985
985
  )
mdbq/spider/aikucun.py CHANGED
@@ -19,7 +19,8 @@ from mdbq.config import set_support
19
19
  from selenium.webdriver.common.keys import Keys
20
20
  from mdbq.other import ua_sj
21
21
  from mdbq.mysql import mysql
22
- from mdbq.config import myconfig
22
+ from mdbq.mysql import s_query
23
+ from mdbq.config import default
23
24
  import socket
24
25
 
25
26
  warnings.filterwarnings('ignore')
@@ -37,6 +38,9 @@ else:
37
38
  upload_path = os.path.join(D_PATH, '数据上传中心', '爱库存') # 此目录位于下载文件夹
38
39
 
39
40
  m_engine, username, password, host, port = default.get_mysql_engine(platform='Windows', hostname='xigua_lx', sql='mysql', local='remoto', config_file=None)
41
+ print(username, password, host, port)
42
+ # 实例化一个数据查询类,用来获取 cookies 表数据
43
+ download = s_query.QueryDatas(username=username, password=password, host=host, port=port)
40
44
 
41
45
 
42
46
  def get_cookie_aikucun():
@@ -118,6 +122,40 @@ def get_cookie_aikucun():
118
122
  continue
119
123
  else:
120
124
  new_cookies_list.append(cookie)
125
+
126
+ ######### 新增 写入 mysql #########
127
+ set_typ = {
128
+ '日期': 'date',
129
+ 'domain': 'varchar(100)',
130
+ 'expiry': 'int',
131
+ 'httpOnly': 'varchar(20)',
132
+ 'name': 'varchar(50)',
133
+ 'path': 'varchar(50)',
134
+ 'sameSite': 'varchar(50)',
135
+ 'secure': 'varchar(50)',
136
+ 'value': 'text',
137
+ '更新时间': 'timestamp'
138
+ }
139
+ _cookies_list = []
140
+ for item in cookies_list:
141
+ new_dict = {'日期': datetime.datetime.today().strftime('%Y-%m-%d'), }
142
+ for k, v in item.items():
143
+ if v is None:
144
+ v = 'None'
145
+ new_dict.update({k: v})
146
+ if 'expiry' not in new_dict:
147
+ new_dict.update({'expiry': 0})
148
+ new_dict.update({'更新时间': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')})
149
+ _cookies_list.append(new_dict)
150
+ m_engine.insert_many_dict(
151
+ db_name='cookie文件',
152
+ table_name='main_aikucun',
153
+ dict_data_list=_cookies_list,
154
+ set_typ=set_typ,
155
+ allow_not_null=True, # 允许插入空值
156
+ )
157
+ #############################################
158
+
121
159
  json_file = os.path.join(cookie_path, filename_aikucun)
122
160
  with open(json_file, 'w', encoding='utf-8') as f:
123
161
  json.dump(new_cookies_list, f, ensure_ascii=False, sort_keys=True, indent=4)
@@ -219,6 +257,38 @@ class AikuCun:
219
257
  cookies_list = json.load(f) # 使用json读取cookies 注意读取的是文件 所以用load而不是loads
220
258
  for cookie in cookies_list:
221
259
  _driver.add_cookie(cookie) # 添加cookies信息
260
+ # print(cookie)
261
+ db_name = 'cookie文件'
262
+ table_name = f'main_{shop_name}'
263
+ df = download.data_to_df(
264
+ db_name=db_name,
265
+ table_name=table_name,
266
+ start_date='2025-01-01',
267
+ end_date='2030-12-11',
268
+ projection={
269
+ 'domain': 1,
270
+ 'expiry': 1,
271
+ 'httpOnly': 1,
272
+ 'name': 1,
273
+ 'path': 1,
274
+ 'sameSite': 1,
275
+ 'secure': 1,
276
+ 'value': 1,
277
+ '更新时间': 1
278
+ },
279
+ )
280
+ # 仅保留最新日期的数据
281
+ idx = df.groupby('name')['更新时间'].idxmax()
282
+ df = df.loc[idx]
283
+ df.pop('更新时间')
284
+ for item in df.to_dict('records'):
285
+ new_dict = {}
286
+ for k, v in item.items():
287
+ if v == 'False':
288
+ v = False
289
+ new_dict.update({k: v})
290
+ # _driver.add_cookie(new_dict) # 添加cookies信息
291
+
222
292
  _driver.refresh()
223
293
  time.sleep(3)
224
294
  return _driver
@@ -417,8 +487,8 @@ class AikuCunNew:
417
487
 
418
488
 
419
489
  if __name__ == '__main__':
420
- get_cookie_aikucun() # 登录并获取 cookies
421
- akucun(date_num=10, headless=True) # 下载数据
490
+ # get_cookie_aikucun() # 登录并获取 cookies
491
+ akucun(date_num=30, headless=True) # 下载数据
422
492
 
423
493
  # a = AikuCunNew(shop_name='aikucun')
424
494
  # a.akc()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.7.2
3
+ Version: 3.7.4
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -4,7 +4,7 @@ mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,
4
4
  mdbq/aggregation/aggregation_bak.py,sha256=-yzApnlqSN2L0E1YMu5ml-W827qpKQvWPCOI7jj2kzY,80264
5
5
  mdbq/aggregation/datashow_bak.py,sha256=1AYSIDkdUx-4as1Ax2rPj0cExM9d-qFMrFYLAaPHNuk,54962
6
6
  mdbq/aggregation/optimize_data.py,sha256=foZGLDGJRhM2qOr2mTvB3InDFId7r4KBXrJfB3-xq1k,2639
7
- mdbq/aggregation/query_data.py,sha256=AiG0W9Rum_hKCTPNB-nuA5ehpnVW12byLA7uwzOmO6Q,168639
7
+ mdbq/aggregation/query_data.py,sha256=wYsBTRx6vmZ-dKQRdl_pnOPcI2djyIIb92MOUy097E0,174930
8
8
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
9
9
  mdbq/bdup/bdup.py,sha256=hJs815hGFwm_X5bP2i9XugG2w2ZY_F0n3-Q0hVpIPPw,4892
10
10
  mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
@@ -16,7 +16,7 @@ mdbq/dataframe/__init__.py,sha256=2HtCN8AdRj53teXDqzysC1h8aPL-mMFy561ESmhehGQ,22
16
16
  mdbq/dataframe/converter.py,sha256=lETYhT7KXlWzWwqguqhk6vI6kj4rnOBEW1lhqKy2Abc,5035
17
17
  mdbq/log/__init__.py,sha256=Mpbrav0s0ifLL7lVDAuePEi1hJKiSHhxcv1byBKDl5E,15
18
18
  mdbq/log/mylogger.py,sha256=oaT7Bp-Hb9jZt52seP3ISUuxVcI19s4UiqTeouScBO0,3258
19
- mdbq/log/spider_logging.py,sha256=EBy3_49RWs1qLO8QM6jB3rk9n35VvpJn65AoET46Ro0,1601
19
+ mdbq/log/spider_logging.py,sha256=CzQIflfbMSBSBjHSO3fEhcG9Oiyj6cR-YU0tObMMyxM,1975
20
20
  mdbq/mongo/__init__.py,sha256=SILt7xMtQIQl_m-ik9WLtJSXIVf424iYgCfE_tnQFbw,13
21
21
  mdbq/mongo/mongo.py,sha256=M9DUeUCMPDngkwn9-ui0uTiFrvfNU1kLs22s5SmoNm0,31899
22
22
  mdbq/mysql/__init__.py,sha256=A_DPJyAoEvTSFojiI2e94zP0FKtCkkwKP1kYUCSyQzo,11
@@ -24,7 +24,7 @@ mdbq/mysql/mysql.py,sha256=YgmSLkwjIUpjiGH3S-bTiaJCKe8As0WvHDOS6_ePyYs,98591
24
24
  mdbq/mysql/s_query.py,sha256=pj5ioJfUT81Su9S-km9G49gF5F2MmXXfw_oAIUzhN28,8794
25
25
  mdbq/mysql/year_month_day.py,sha256=VgewoE2pJxK7ErjfviL_SMTN77ki8GVbTUcao3vFUCE,1523
26
26
  mdbq/other/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
27
- mdbq/other/download_sku_picture.py,sha256=-ia7KIu7Ij3huWF7tXVrWEE7N4QwJfWDbBIP4pVzcQ4,44655
27
+ mdbq/other/download_sku_picture.py,sha256=B5WA2-CQds2l36w4gLs1cgqzWqC1mbQTozqwb3vUQh0,44656
28
28
  mdbq/other/porxy.py,sha256=UHfgEyXugogvXgsG68a7QouUCKaohTKKkI4RN-kYSdQ,4961
29
29
  mdbq/other/pov_city.py,sha256=AEOmCOzOwyjHi9LLZWPKi6DUuSC-_M163664I52u9qw,21050
30
30
  mdbq/other/sku_picture_bak.py,sha256=JwSXYlzamVqcKCD2tRH2VqYVZNr8fM6f--kcGlTVRnM,50026
@@ -36,8 +36,8 @@ mdbq/pbix/refresh_all_old.py,sha256=_pq3WSQ728GPtEG5pfsZI2uTJhU8D6ra-htIk1JXYzw,
36
36
  mdbq/redis/__init__.py,sha256=YtgBlVSMDphtpwYX248wGge1x-Ex_mMufz4-8W0XRmA,12
37
37
  mdbq/redis/getredis.py,sha256=oyFwE-8c6uErSGYNIO0z2ng93mH0zstRLD86MWqF6M8,25636
38
38
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
39
- mdbq/spider/aikucun.py,sha256=1gAEwCUmhCSpOSRPD2EEcbH3bFGn4sUQnQUAsJb5-qM,19391
40
- mdbq-3.7.2.dist-info/METADATA,sha256=8R-WnzR5mVYftpJ8JekalK3kHRDLqom2RM22uV8QMTI,243
41
- mdbq-3.7.2.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
42
- mdbq-3.7.2.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
43
- mdbq-3.7.2.dist-info/RECORD,,
39
+ mdbq/spider/aikucun.py,sha256=qMU29gb72OK8GLBD-zENo1EmxuojRnuPyEdk5S2KDKw,21767
40
+ mdbq-3.7.4.dist-info/METADATA,sha256=oviqiqBpDqxScLXtRS6FhvAg-WudJQX_--ykPyP9zlM,243
41
+ mdbq-3.7.4.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
42
+ mdbq-3.7.4.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
43
+ mdbq-3.7.4.dist-info/RECORD,,
File without changes