mdbq 3.7.23__py3-none-any.whl → 3.7.24__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1011,19 +1011,20 @@ class MysqlDatasQuery:
1011
1011
  )
1012
1012
  return True
1013
1013
 
1014
- def tg_cjzb_qzt(self, is_maximize=True):
1014
+ def tg_cjzb_qzt(self, projection=None, is_maximize=True):
1015
1015
  start_date, end_date = self.months_data(num=self.months)
1016
- projection = {
1017
- '日期': 1,
1018
- '场景名字': 1,
1019
- '计划id': 1,
1020
- '全站花费': 1,
1021
- '全站观看次数': 1,
1022
- '全站宝贝点击量': 1,
1023
- '全站成交金额': 1,
1024
- '全站成交笔数': 1,
1025
- '店铺名称': 1,
1026
- }
1016
+ if not projection:
1017
+ projection = {
1018
+ '日期': 1,
1019
+ '场景名字': 1,
1020
+ '计划id': 1,
1021
+ '全站花费': 1,
1022
+ '全站观看次数': 1,
1023
+ '全站宝贝点击量': 1,
1024
+ '全站成交金额': 1,
1025
+ '全站成交笔数': 1,
1026
+ '店铺名称': 1,
1027
+ }
1027
1028
  __res = []
1028
1029
  for year in range(2025, datetime.datetime.today().year + 1):
1029
1030
  df = self.download.data_to_df(
@@ -1037,14 +1038,6 @@ class MysqlDatasQuery:
1037
1038
  df = pd.concat(__res, ignore_index=True)
1038
1039
  if len(df) == 0:
1039
1040
  return pd.DataFrame()
1040
- # 这里的重命名要注意,因为 tg_cjzb 函数还要重命名一次,注意改为 tg_cjzb 命名前的列名
1041
- df.rename(columns={
1042
- '全站花费': '花费',
1043
- '全站观看次数': '观看次数',
1044
- '全站宝贝点击量': '点击量',
1045
- '全站成交金额': '总成交金额',
1046
- '全站成交笔数': '总成交笔数'
1047
- }, inplace=True)
1048
1041
  return df
1049
1042
 
1050
1043
 
@@ -1081,6 +1074,14 @@ class MysqlDatasQuery:
1081
1074
  df = pd.concat(__res, ignore_index=True)
1082
1075
  cjzb_qzt = self.tg_cjzb_qzt(is_maximize=True)
1083
1076
  if len(cjzb_qzt) > 0:
1077
+ # 这里的重命名要注意,因为 tg_cjzb 函数还要重命名一次,注意改为 tg_cjzb 命名前的列名
1078
+ cjzb_qzt.rename(columns={
1079
+ '全站花费': '花费',
1080
+ '全站观看次数': '观看次数',
1081
+ '全站宝贝点击量': '点击量',
1082
+ '全站成交金额': '总成交金额',
1083
+ '全站成交笔数': '总成交笔数'
1084
+ }, inplace=True)
1084
1085
  for col in df.columns.tolist():
1085
1086
  if col not in cjzb_qzt.columns.tolist():
1086
1087
  cjzb_qzt[col] = 0
@@ -2781,6 +2782,43 @@ class MysqlDatasQuery:
2781
2782
 
2782
2783
  _datas = [item for item in [df_tm, df_tb, df_tb_qzt, df_al, df_sj, df_tm_pxb, df_tm_living, df_jd, df_jd_qzyx] if len(item) > 0] # 阻止空的 dataframe
2783
2784
  df = pd.concat(_datas, axis=0, ignore_index=True)
2785
+ # 超级直播全站推广不包含在营销场景报表中,所以单独添加 2025-03-05
2786
+ projection = {
2787
+ '日期': 1,
2788
+ '店铺名称': 1,
2789
+ '场景id': 1,
2790
+ '场景名字': 1,
2791
+ '全站花费': 1,
2792
+ '全站观看次数': 1,
2793
+ '全站宝贝点击量': 1,
2794
+ '全站成交笔数': 1,
2795
+ '全站成交金额': 1,
2796
+ }
2797
+ cjzb_qzt = self.tg_cjzb_qzt(projection=projection, is_maximize=True)
2798
+ if len(cjzb_qzt) > 0:
2799
+ cjzb_qzt.rename(columns={
2800
+ '场景名字': '营销场景',
2801
+ '全站花费': '花费',
2802
+ '全站观看次数': '展现量',
2803
+ '全站宝贝点击量': '点击量',
2804
+ '全站成交笔数': '成交笔数',
2805
+ '全站成交金额': '成交金额',
2806
+ }, inplace=True)
2807
+ cjzb_qzt = cjzb_qzt.groupby(
2808
+ ['日期', '店铺名称', '场景id', '营销场景'],
2809
+ as_index=False).agg(
2810
+ **{
2811
+ '花费': ('花费', np.max),
2812
+ '展现量': ('展现量', np.max),
2813
+ '点击量': ('点击量', np.max),
2814
+ '成交笔数': ('成交笔数', np.max),
2815
+ '成交金额': ('成交金额', np.max)
2816
+ }
2817
+ )
2818
+ for col in df.columns.tolist():
2819
+ if col not in cjzb_qzt.columns.tolist():
2820
+ cjzb_qzt[col] = 0
2821
+ df = pd.concat([df, cjzb_qzt], ignore_index=True)
2784
2822
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore') # 转换日期列
2785
2823
  df = df.groupby(
2786
2824
  ['日期', '店铺名称', '营销场景'],
@@ -3905,14 +3943,7 @@ def test():
3905
3943
  sdq.spph(db_name='聚合数据', table_name='天猫_商品排行')
3906
3944
 
3907
3945
  if __name__ == '__main__':
3908
- # main(
3909
- # days=150, # 清理聚合数据的日期长度
3910
- # months=3 # 生成聚合数据的长度
3911
- # )
3912
-
3913
- sdq = MysqlDatasQuery() # 实例化数据处理类
3914
- sdq.months = 2
3915
- sdq.tg_cjzb(db_name='聚合数据', table_name='天猫_超级直播')
3916
-
3917
-
3918
-
3946
+ main(
3947
+ days=150, # 清理聚合数据的日期长度
3948
+ months=3 # 生成聚合数据的长度
3949
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mdbq
3
- Version: 3.7.23
3
+ Version: 3.7.24
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -2,7 +2,7 @@ mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
2
2
  mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
3
3
  mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
4
4
  mdbq/aggregation/optimize_data_bak.py,sha256=wB7prQdZAHyjzXH9V8g8X_JBMdvCCUITN1hVwK72Tdg,952
5
- mdbq/aggregation/query_data.py,sha256=wOngHgsU7nFiz6PkrXz0eb5g4m4nc5m4_yJslR5XOWk,176294
5
+ mdbq/aggregation/query_data.py,sha256=_muZtq-5aox1bRecCv--_ScBMDVhjN8fdBFdSB-d-ww,177925
6
6
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
7
7
  mdbq/bdup/bdup.py,sha256=hJs815hGFwm_X5bP2i9XugG2w2ZY_F0n3-Q0hVpIPPw,4892
8
8
  mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
@@ -31,7 +31,7 @@ mdbq/redis/__init__.py,sha256=YtgBlVSMDphtpwYX248wGge1x-Ex_mMufz4-8W0XRmA,12
31
31
  mdbq/redis/getredis.py,sha256=1pTga2iINx0NV2ffl0D-aspZhrZMDQR8SpohAv1acoo,24076
32
32
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
33
33
  mdbq/spider/aikucun.py,sha256=o_QwFWbD6O2F56k6bwnpVV55EcdFCyes05ON7iu9TrA,21882
34
- mdbq-3.7.23.dist-info/METADATA,sha256=fdkmDNycOfqYZ-1Yex9emViiRWSFz_fxEg4EF8aLS_I,364
35
- mdbq-3.7.23.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
36
- mdbq-3.7.23.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
37
- mdbq-3.7.23.dist-info/RECORD,,
34
+ mdbq-3.7.24.dist-info/METADATA,sha256=XIXcOBgDC16DPVH0q9Ce0vN5OQqh-dqUkUCAyku3UQ8,364
35
+ mdbq-3.7.24.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
36
+ mdbq-3.7.24.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
37
+ mdbq-3.7.24.dist-info/RECORD,,
File without changes