mdbq 3.6.9__py3-none-any.whl → 3.6.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mdbq/redis/getredis.py CHANGED
@@ -271,7 +271,6 @@ class RedisData(object):
271
271
  temp_df[col] = temp_df[col].dt.strftime("%Y-%m-%d")
272
272
  return temp_df.to_json(orient="records", force_ascii=False)
273
273
 
274
-
275
274
  class RedisDataHash(object):
276
275
  """
277
276
  存储 hash
@@ -285,13 +284,6 @@ class RedisDataHash(object):
285
284
  """
286
285
 
287
286
  def __init__(self, redis_engine, download, cache_ttl: int):
288
- """
289
- 初始化缓存处理器
290
-
291
- :param redis_engine: Redis连接实例
292
- :param download: 数据下载处理器(需实现data_to_df方法)
293
- :param cache_ttl: 缓存存活时间(单位:分钟,内部转换为秒存储)
294
- """
295
287
  self.redis_engine = redis_engine
296
288
  self.download = download
297
289
  self.cache_ttl = cache_ttl * 60 # 转换为秒存储
@@ -304,20 +296,8 @@ class RedisDataHash(object):
304
296
  start_date,
305
297
  end_date
306
298
  ) -> pd.DataFrame:
307
- """
308
- 从MySQL直接获取数据的核心方法
309
-
310
- 处理逻辑:
311
- 1. 当启用年份分表时(set_year=True),自动遍历2024到当前年份的所有分表
312
- 2. 合并所有符合条件的数据表内容
313
- 3. 自动处理日期列格式转换
314
-
315
- :return: 合并后的DataFrame(可能包含多个分表数据)
316
- """
317
- # 原有实现保持不变
318
299
  dfs = []
319
300
  if set_year:
320
- # 处理年份分表情况(例如 table_2024, table_2025...)
321
301
  current_year = datetime.datetime.today().year
322
302
  for year in range(2024, current_year + 1):
323
303
  df = self._fetch_table_data(
@@ -326,12 +306,10 @@ class RedisDataHash(object):
326
306
  if df is not None:
327
307
  dfs.append(df)
328
308
  else:
329
- # 单表查询模式
330
309
  df = self._fetch_table_data(db_name, table_name, start_date, end_date)
331
310
  if df is not None:
332
311
  dfs.append(df)
333
312
 
334
- # 合并结果并处理空数据情况
335
313
  combined_df = pd.concat(dfs, ignore_index=True) if dfs else pd.DataFrame()
336
314
  if combined_df.empty:
337
315
  logger.warn(f"warning: {db_name}.{table_name} 未读取到数据")
@@ -347,69 +325,46 @@ class RedisDataHash(object):
347
325
  start_date,
348
326
  end_date
349
327
  ) -> pd.DataFrame:
350
- """
351
- 带缓存策略的数据获取主入口
352
-
353
- 执行流程:
354
- 1. 生成缓存键并检查TTL(存活时间)
355
- 2. 当TTL<60秒时触发异步更新,同时直接访问MySQL获取最新数据
356
- 3. 从Redis获取历史数据并进行日期过滤
357
- 4. 若缓存数据不完整,触发异步更新并降级到MySQL查询
358
- 5. 异常时自动降级到MySQL查询
359
-
360
- 设计特点:
361
- - 缓存预热:首次访问时异步更新缓存
362
- - 降级机制:任何异常自动切换直连MySQL
363
- - 过时缓存:当TTL不足时并行更新缓存
364
- """
365
- # 时分秒部分重置为 00:00:00 这是个巨坑,不可以省略
366
328
  start_dt = pd.to_datetime(start_date).floor('D')
367
329
  end_dt = pd.to_datetime(end_date).floor('D')
368
- # 生成缓存键名
369
330
  cache_key = self._generate_cache_key(db_name, table_name, set_year)
370
331
 
371
332
  try:
372
- # 检查缓存
373
333
  ttl = self.redis_engine.ttl(cache_key)
374
- if ttl < 60: # 当剩余时间不足1分钟时触发更新
375
- # 获取当前缓存
334
+ if ttl < 60:
376
335
  cache_data = self._fetch_redis_data(cache_key)
377
- # 异步更新缓存
378
336
  self._trigger_async_cache_update(
379
337
  cache_key, db_name, table_name, set_year, start_date, end_date, cache_data
380
338
  )
381
- # 立即降级返回MySQL查询
382
339
  return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
383
340
 
384
- # 按年份范围获取缓存数据(优化大数据量时的读取效率)
385
- start_year = start_dt.year
386
- end_year = end_dt.year
387
- cache_data = self._fetch_redis_data(cache_key, start_year, end_year)
388
- # 空数据检查(缓存未命中)
341
+ # 生成月份范围
342
+ start_month = start_dt.to_period('M')
343
+ end_month = end_dt.to_period('M')
344
+ months = pd.period_range(start_month, end_month, freq='M').strftime("%Y%m").tolist()
345
+ cache_data = self._fetch_redis_data(cache_key, months)
346
+
389
347
  if cache_data.empty:
390
348
  self._trigger_async_cache_update(
391
349
  cache_key, db_name, table_name, set_year, start_date, end_date, cache_data
392
350
  )
393
351
  return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
394
- # 按请求范围过滤数据(应对按年存储的粗粒度缓存)
352
+
395
353
  filtered_df = self._filter_by_date_range(cache_data, start_dt, end_dt)
396
354
  if not filtered_df.empty:
397
355
  if '日期' in filtered_df.columns.tolist():
398
- # 缓存数据的日期在请求日期范围内时,直接返回缓存数据
399
356
  exsit_min_date = filtered_df['日期'].min()
400
357
  if exsit_min_date <= start_dt:
401
358
  return filtered_df
402
359
  else:
403
360
  return filtered_df
404
- # 缓存数据不完整时触发异步更新缓存
361
+
405
362
  self._trigger_async_cache_update(
406
363
  cache_key, db_name, table_name, set_year, start_date, end_date, cache_data
407
364
  )
408
- # 立即降级返回MySQL查询
409
365
  return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
410
366
 
411
367
  except Exception as e:
412
- # 异常策略:立即返回MySQL查询,保障服务可用
413
368
  logger.error(f"Redis 连接异常: {e},直接访问 MySQL")
414
369
  return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
415
370
 
@@ -423,45 +378,25 @@ class RedisDataHash(object):
423
378
  end_date,
424
379
  existing_data: pd.DataFrame
425
380
  ) -> None:
426
- """
427
- 异步缓存更新方法
428
-
429
- 核心逻辑:
430
- 1. 获取MySQL最新数据
431
- 2. 合并新旧数据(保留历史数据中不在新数据时间范围内的部分)
432
- 3. 智能存储策略:
433
- - 无日期字段:全量存储到"all"字段
434
- - 有日期字段:按年份分片存储(提升查询效率)
435
-
436
- 设计特点:
437
- - 增量更新:仅合并必要数据,避免全量覆盖
438
- - 数据分片:按年存储提升大数据的读取性能
439
- - 容错处理:跳过无日期字段的异常情况
440
- """
441
381
  try:
442
- # 获取最新数据(使用最新查询条件)
443
382
  new_data = self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
444
383
  if new_data.empty:
445
384
  return
446
385
 
447
- # 合并缓存数据
448
386
  combined_data = self._merge_data(new_data, existing_data)
449
387
 
450
388
  if not combined_data.empty:
451
- # 处理无日期字段的特殊情况
452
389
  if '日期' not in combined_data.columns.tolist():
453
- # 数据序列化
454
390
  serialized_data = self._serialize_data(combined_data)
455
391
  self.redis_engine.hset(cache_key, "all", serialized_data)
456
392
  self.redis_engine.expire(cache_key, self.cache_ttl)
457
393
  else:
458
- # 按年份分片存储策略
459
- combined_data['年份'] = combined_data['日期'].dt.year
460
- # 分组存储到Redis哈希的不同字段(例如2024字段存储当年数据)
461
- for year, group in combined_data.groupby('年份'):
462
- year_str = str(year)
463
- serialized_data = self._serialize_data(group.drop(columns=['年份']))
464
- self.redis_engine.hset(cache_key, year_str, serialized_data)
394
+ # 按月分片存储
395
+ combined_data['month'] = combined_data['日期'].dt.to_period('M').dt.strftime("%Y%m")
396
+ for month_str, group in combined_data.groupby('month'):
397
+ group = group.drop(columns=['month'])
398
+ serialized_data = self._serialize_data(group)
399
+ self.redis_engine.hset(cache_key, month_str, serialized_data)
465
400
  self.redis_engine.expire(cache_key, self.cache_ttl)
466
401
  logger.info(f"缓存更新 {cache_key} | 数据量: {len(combined_data)}")
467
402
  except Exception as e:
@@ -474,7 +409,6 @@ class RedisDataHash(object):
474
409
  start_date,
475
410
  end_date
476
411
  ) -> pd.DataFrame:
477
- """执行MySQL查询并返回DataFrame(带异常处理)"""
478
412
  try:
479
413
  return self.download.data_to_df(
480
414
  db_name=db_name,
@@ -484,23 +418,14 @@ class RedisDataHash(object):
484
418
  projection={}
485
419
  )
486
420
  except Exception as e:
487
- logger.info(f"MySQL 查询异常 {db_name}.{table_name}: {e}")
421
+ logger.error(f"MySQL 查询异常 {db_name}.{table_name}: {e}")
488
422
  return pd.DataFrame()
489
423
 
490
- def _fetch_redis_data(self, cache_key: str, start_year: int = None, end_year: int = None) -> pd.DataFrame:
491
- """
492
- 从Redis哈希表读取数据
493
-
494
- 优化策略:
495
- - 当指定年份范围时,仅获取相关字段(hmget)
496
- - 未指定范围时全量获取(hgetall)
497
- -- 从mysql过来的表,虽然没有日期列,但也指定了 start_year/end_year,再redis中存储的键名是"all",所以要把 all也加进去
498
- """
424
+ def _fetch_redis_data(self, cache_key: str, months: list = None) -> pd.DataFrame:
499
425
  try:
500
- if start_year is not None and end_year is not None:
501
- # 按年份范围精确获取字段(提升性能)
502
- fields = [str(y) for y in range(start_year, end_year + 1)]
503
- fields += ['all']
426
+ if months is not None:
427
+ fields = months.copy()
428
+ fields.append('all')
504
429
  data_list = self.redis_engine.hmget(cache_key, fields)
505
430
  dfs = []
506
431
  for data, field in zip(data_list, fields):
@@ -510,7 +435,6 @@ class RedisDataHash(object):
510
435
  dfs.append(df)
511
436
  return pd.concat(dfs, ignore_index=True) if dfs else pd.DataFrame()
512
437
  else:
513
- # 全量获取模式
514
438
  data_dict = self.redis_engine.hgetall(cache_key)
515
439
  dfs = []
516
440
  for field, data in data_dict.items():
@@ -519,20 +443,18 @@ class RedisDataHash(object):
519
443
  df = self._convert_date_columns(df)
520
444
  dfs.append(df)
521
445
  except Exception as e:
522
- logger.info(f"Redis 数据解析失败 {cache_key} 字段 {field}: {e}")
446
+ logger.error(f"Redis 数据解析失败 {cache_key} 字段 {field}: {e}")
523
447
  return pd.concat(dfs, ignore_index=True) if dfs else pd.DataFrame()
524
448
  except Exception as e:
525
- logger.info(f"Redis 数据获取失败 {cache_key}: {e}")
449
+ logger.error(f"Redis 数据获取失败 {cache_key}: {e}")
526
450
  return pd.DataFrame()
527
451
 
528
452
  def _convert_date_columns(self, df: pd.DataFrame) -> pd.DataFrame:
529
- """统一日期列格式转换"""
530
453
  if "日期" in df.columns:
531
454
  df["日期"] = pd.to_datetime(df["日期"], format="%Y-%m-%d", errors="coerce")
532
455
  return df
533
456
 
534
457
  def _generate_cache_key(self, db_name: str, table_name: str, set_year: bool) -> str:
535
- """生成缓存键名"""
536
458
  return f"{db_name}:{table_name}_haveyear" if set_year else f"{db_name}:{table_name}"
537
459
 
538
460
  def _filter_by_date_range(
@@ -541,7 +463,6 @@ class RedisDataHash(object):
541
463
  start_dt: datetime.datetime,
542
464
  end_dt: datetime.datetime
543
465
  ) -> pd.DataFrame:
544
- """按日期范围精确过滤数据"""
545
466
  if "日期" not in df.columns:
546
467
  return df
547
468
  date_mask = (df["日期"] >= start_dt) & (df["日期"] <= end_dt)
@@ -557,7 +478,6 @@ class RedisDataHash(object):
557
478
  end_date: str,
558
479
  existing_data: pd.DataFrame
559
480
  ):
560
- """启动异步线程执行缓存更新(不阻塞主流程)"""
561
481
  thread = threading.Thread(
562
482
  target=self.set_redis,
563
483
  args=(cache_key, db_name, table_name, set_year, start_date, end_date, existing_data),
@@ -566,17 +486,14 @@ class RedisDataHash(object):
566
486
  thread.start()
567
487
 
568
488
  def _merge_data(self, new_data: pd.DataFrame, existing_data: pd.DataFrame) -> pd.DataFrame:
569
- """合并新旧数据集策略:保留现有数据中在新数据范围外的历史数据,并按日期排序"""
570
489
  if existing_data.empty or "日期" not in existing_data.columns:
571
490
  return new_data
572
491
  new_data["日期"] = pd.to_datetime(new_data["日期"])
573
492
  existing_data["日期"] = pd.to_datetime(existing_data["日期"])
574
493
 
575
- # 计算新数据日期范围
576
494
  new_min = new_data["日期"].min()
577
495
  new_max = new_data["日期"].max()
578
496
 
579
- # 保留现有数据中在新数据范围之外的部分
580
497
  valid_historical = existing_data[
581
498
  (existing_data["日期"] < new_min) | (existing_data["日期"] > new_max)
582
499
  ]
@@ -585,53 +502,35 @@ class RedisDataHash(object):
585
502
  return merged_data
586
503
 
587
504
  def _serialize_data(self, df: pd.DataFrame) -> bytes:
588
- """
589
- 高性能数据序列化方法
590
-
591
- 处理要点:
592
- 1. 日期类型转换为字符串
593
- 2. Decimal类型转换为浮点数
594
- 3. NaN值统一转换为None
595
- 4. 优化JSON序列化性能
596
- """
597
505
  if df.empty:
598
506
  return json.dumps([], ensure_ascii=False).encode("utf-8")
599
507
  temp_df = df.copy()
600
508
 
601
- # 处理日期类型列(安全转换)
602
509
  date_cols = temp_df.select_dtypes(include=["datetime64[ns]"]).columns
603
510
  for col in date_cols:
604
- # 处理全NaT列避免类型错误
605
511
  if temp_df[col].isna().all():
606
- temp_df[col] = temp_df[col].astype(object) # 转换为object类型避免NaT
512
+ temp_df[col] = temp_df[col].astype(object)
607
513
  temp_df[col] = (
608
514
  temp_df[col]
609
- .dt.strftime("%Y-%m-%d") # 安全使用dt访问器(因类型强制为datetime)
515
+ .dt.strftime("%Y-%m-%d")
610
516
  .where(temp_df[col].notna(), None)
611
517
  )
612
518
 
613
- # 统一空值处理(保护全None列类型)
614
519
  def safe_null_convert(series):
615
- """保留全None列的原始dtype"""
616
520
  if series.isna().all():
617
521
  return series.astype(object).where(pd.notnull(series), None)
618
522
  return series.where(pd.notnull(series), None)
619
523
 
620
524
  temp_df = temp_df.apply(safe_null_convert)
621
525
 
622
- # 类型处理函数(增强嵌套结构处理)
623
526
  def decimal_serializer(obj):
624
- """递归序列化处理"""
625
- # 提前处理None值
626
527
  if obj is None:
627
528
  return None
628
-
629
- # 按类型分发处理
630
529
  if isinstance(obj, Decimal):
631
530
  return round(float(obj), 6)
632
531
  elif isinstance(obj, pd.Timestamp):
633
- return obj.strftime("%Y-%m-%d %H:%M:%S") # 兜底处理漏网之鱼
634
- elif isinstance(obj, np.generic): # 处理所有numpy标量类型
532
+ return obj.strftime("%Y-%m-%d %H:%M:%S")
533
+ elif isinstance(obj, np.generic):
635
534
  return obj.item()
636
535
  elif isinstance(obj, (datetime.date, datetime.datetime)):
637
536
  return obj.isoformat()
@@ -640,11 +539,10 @@ class RedisDataHash(object):
640
539
  elif isinstance(obj, dict):
641
540
  return {decimal_serializer(k): decimal_serializer(v) for k, v in obj.items()}
642
541
  elif isinstance(obj, bytes):
643
- return obj.decode("utf-8", errors="replace") # 二进制安全处理
644
- elif isinstance(obj, pd.Series): # 防止意外传入Series对象
542
+ return obj.decode("utf-8", errors="replace")
543
+ elif isinstance(obj, pd.Series):
645
544
  return obj.to_list()
646
545
  else:
647
- # 尝试直接转换可序列化类型
648
546
  try:
649
547
  json.dumps(obj)
650
548
  return obj
@@ -652,18 +550,15 @@ class RedisDataHash(object):
652
550
  logger.error(f"无法序列化类型 {type(obj)}: {str(obj)}")
653
551
  raise
654
552
 
655
- # 序列化前防御性检查
656
553
  try:
657
554
  data_records = temp_df.to_dict(orient="records")
658
555
  except Exception as e:
659
556
  logger.error(f"数据转换字典失败: {str(e)}")
660
557
  raise
661
558
 
662
- # 空记录特殊处理
663
559
  if not data_records:
664
560
  return json.dumps([], ensure_ascii=False).encode("utf-8")
665
561
 
666
- # 执行序列化
667
562
  try:
668
563
  return json.dumps(
669
564
  data_records,
@@ -0,0 +1,710 @@
1
+ # -*- coding: UTF-8 –*-
2
+ import os.path
3
+ import redis
4
+ import socket
5
+ from mdbq.mysql import s_query
6
+ from mdbq.config import myconfig
7
+ import pandas as pd
8
+ import json
9
+ import datetime
10
+ import threading
11
+ import logging
12
+ from logging.handlers import RotatingFileHandler
13
+ import getpass
14
+ import platform
15
+ from decimal import Decimal
16
+
17
+ if platform.system() == 'Windows':
18
+ D_PATH = os.path.join(f'C:\\Users\\{getpass.getuser()}\\Downloads')
19
+ else:
20
+ D_PATH = os.path.join(f'/Users/{getpass.getuser()}/Downloads')
21
+
22
+
23
+ if socket.gethostname() == 'company' or socket.gethostname() == 'Mac2.local':
24
+ conf = myconfig.main()
25
+ conf_data = conf['Windows']['company']['mysql']['local']
26
+ username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
27
+ redis_password = conf['Windows']['company']['redis']['local']['password']
28
+ elif socket.gethostname() == 'MacBookPro':
29
+ conf = myconfig.main()
30
+ conf_data = conf['Windows']['xigua_lx']['mysql']['local']
31
+ username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
32
+ redis_password = conf['Windows']['company']['redis']['local']['password']
33
+ else:
34
+ conf = myconfig.main()
35
+ conf_data = conf['Windows']['xigua_lx']['mysql']['local']
36
+ username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
37
+ redis_password = conf['Windows']['company']['redis']['local']['password'] # redis 使用本地数据,全部机子相同
38
+
39
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(levelname)s | %(message)s')
40
+
41
+ # 获取当前模块的日志记录器
42
+ logger = logging.getLogger(__name__)
43
+
44
+ # 创建一个文件处理器,用于将日志写入文件
45
+ # file_handler = logging.FileHandler(os.path.join(D_PATH, 'logfile', 'redis.log'))
46
+ if not os.path.isdir(os.path.join(D_PATH, 'logfile')):
47
+ os.makedirs(os.path.join(D_PATH, 'logfile'))
48
+ log_file = os.path.join(D_PATH, 'logfile', 'redis.log')
49
+ file_handler = RotatingFileHandler(log_file, maxBytes=3 * 1024 * 1024, backupCount=10) # 保留10个备份文件
50
+ file_handler.setLevel(logging.INFO) # 设置文件处理器的日志级别
51
+
52
+ # 创建一个日志格式器,并设置给文件处理器
53
+ formatter = logging.Formatter('[%(asctime)s] %(levelname)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
54
+ file_handler.setFormatter(formatter)
55
+
56
+ # 将文件处理器添加到日志记录器
57
+ logger.addHandler(file_handler)
58
+
59
+
60
+ class RedisData(object):
61
+ """
62
+ 存储 string
63
+ """
64
+ def __init__(self, redis_engine, download, cache_ttl: int):
65
+ self.redis_engine = redis_engine # Redis 数据处理引擎
66
+ self.download = download # MySQL 数据处理引擎
67
+ self.cache_ttl = cache_ttl * 60 # 缓存过期时间(秒)
68
+
69
+ def get_from_mysql(
70
+ self,
71
+ db_name: str,
72
+ table_name: str,
73
+ set_year: bool,
74
+ start_date,
75
+ end_date
76
+ ) -> pd.DataFrame:
77
+ """
78
+ 从 MySQL 读取数据并返回 DataFrame
79
+
80
+ Args:
81
+ set_year: 表名是否包含年份后缀
82
+ """
83
+ dfs = []
84
+ if set_year:
85
+ current_year = datetime.datetime.today().year
86
+ for year in range(2024, current_year + 1):
87
+ df = self._fetch_table_data(
88
+ db_name, f"{table_name}_{year}", start_date, end_date
89
+ )
90
+ if df is not None:
91
+ dfs.append(df)
92
+ else:
93
+ df = self._fetch_table_data(db_name, table_name, start_date, end_date)
94
+ if df is not None:
95
+ dfs.append(df)
96
+
97
+ combined_df = pd.concat(dfs, ignore_index=True) if dfs else pd.DataFrame()
98
+ if combined_df.empty:
99
+ logger.info(f"警告: {db_name}.{table_name} 未读取到数据")
100
+ else:
101
+ combined_df = self._convert_date_columns(combined_df)
102
+ return combined_df
103
+
104
+ def get_from_redis(
105
+ self,
106
+ db_name: str,
107
+ table_name: str,
108
+ set_year: bool,
109
+ start_date,
110
+ end_date
111
+ ) -> pd.DataFrame:
112
+ """
113
+ 从 Redis 获取数据,若缓存过期/不完整则触发异步更新
114
+ """
115
+ start_dt = pd.to_datetime(start_date)
116
+ end_dt = pd.to_datetime(end_date)
117
+ cache_key = self._generate_cache_key(db_name, table_name, set_year)
118
+
119
+ # 尝试获取缓存元数据
120
+ try:
121
+ ttl = self.redis_engine.ttl(cache_key)
122
+ cache_data = self._fetch_redis_data(cache_key)
123
+ except Exception as e:
124
+ logger.info(f"Redis 连接异常: {e},直接访问 MySQL")
125
+ return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
126
+
127
+ # 缓存失效处理逻辑
128
+ if ttl < 60 or cache_data.empty:
129
+ self._trigger_async_cache_update(
130
+ cache_key, db_name, table_name, set_year, start_date, end_date, cache_data
131
+ )
132
+ return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
133
+
134
+ # 处理有效缓存数据
135
+ filtered_df = self._filter_by_date_range(cache_data, start_dt, end_dt)
136
+ if not filtered_df.empty:
137
+ return filtered_df
138
+
139
+ # 缓存数据不满足查询范围要求
140
+ self._trigger_async_cache_update(
141
+ cache_key, db_name, table_name, set_year, start_date, end_date, cache_data
142
+ )
143
+ return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
144
+
145
+ def set_redis(
146
+ self,
147
+ cache_key: str,
148
+ db_name: str,
149
+ table_name: str,
150
+ set_year: bool,
151
+ start_date,
152
+ end_date,
153
+ existing_data: pd.DataFrame
154
+ ) -> pd.DataFrame:
155
+ """
156
+ 异步更新 Redis 缓存,合并新旧数据
157
+ """
158
+ try:
159
+ # 从 MySQL 获取新数据
160
+ new_data = self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
161
+ if new_data.empty:
162
+ return pd.DataFrame()
163
+
164
+ # 合并历史数据
165
+ combined_data = self._merge_data(new_data, existing_data)
166
+
167
+ # 序列化并存储到 Redis
168
+ serialized_data = self._serialize_data(combined_data)
169
+ self.redis_engine.set(cache_key, serialized_data)
170
+ self.redis_engine.expire(cache_key, self.cache_ttl)
171
+
172
+ logger.info(f"缓存更新 {cache_key} | 数据量: {len(combined_data)}")
173
+ return combined_data
174
+
175
+ except Exception as e:
176
+ logger.info(f"缓存更新失败: {cache_key} - {str(e)}")
177
+ return pd.DataFrame()
178
+
179
+ # Helper Methods ------------------------------------------------
180
+
181
+ def _fetch_table_data(
182
+ self,
183
+ db_name: str,
184
+ table_name: str,
185
+ start_date,
186
+ end_date
187
+ ) -> pd.DataFrame:
188
+ """封装 MySQL 数据获取逻辑"""
189
+ try:
190
+ return self.download.data_to_df(
191
+ db_name=db_name,
192
+ table_name=table_name,
193
+ start_date=start_date,
194
+ end_date=end_date,
195
+ projection={}
196
+ )
197
+ except Exception as e:
198
+ logger.info(f"MySQL 查询异常 {db_name}.{table_name}: {e}")
199
+ return pd.DataFrame()
200
+
201
+ def _fetch_redis_data(self, cache_key: str) -> pd.DataFrame:
202
+ """从 Redis 获取并解析数据(自动转换日期列)"""
203
+ try:
204
+ data = self.redis_engine.get(cache_key)
205
+ if not data:
206
+ return pd.DataFrame()
207
+ # 反序列化数据
208
+ df = pd.DataFrame(json.loads(data.decode("utf-8")))
209
+ return self._convert_date_columns(df)
210
+ except Exception as e:
211
+ logger.info(f"Redis 数据解析失败 {cache_key}: {e}")
212
+ return pd.DataFrame()
213
+
214
+ def _convert_date_columns(self, df: pd.DataFrame) -> pd.DataFrame:
215
+ """统一处理日期列转换"""
216
+ if "日期" in df.columns:
217
+ df["日期"] = pd.to_datetime(df["日期"], format="%Y-%m-%d", errors="coerce")
218
+ return df
219
+
220
+ def _generate_cache_key(self, db_name: str, table_name: str, set_year: bool) -> str:
221
+ """生成标准化的缓存键"""
222
+ return f"{db_name}:{table_name}_haveyear" if set_year else f"{db_name}:{table_name}"
223
+
224
+ def _filter_by_date_range(
225
+ self,
226
+ df: pd.DataFrame,
227
+ start_dt: datetime.datetime,
228
+ end_dt: datetime.datetime
229
+ ) -> pd.DataFrame:
230
+ """按日期范围筛选数据"""
231
+ if "日期" not in df.columns:
232
+ return df
233
+ date_mask = (df["日期"] >= start_dt) & (df["日期"] <= end_dt)
234
+ return df[date_mask].copy()
235
+
236
+ def _trigger_async_cache_update(
237
+ self,
238
+ cache_key: str,
239
+ db_name: str,
240
+ table_name: str,
241
+ set_year: bool,
242
+ start_date: str,
243
+ end_date: str,
244
+ existing_data: pd.DataFrame
245
+ ):
246
+ """启动异步缓存更新线程"""
247
+ thread = threading.Thread(
248
+ target=self.set_redis,
249
+ args=(cache_key, db_name, table_name, set_year, start_date, end_date, existing_data),
250
+ daemon=True
251
+ )
252
+ thread.start()
253
+
254
+ def _merge_data(self, new_data: pd.DataFrame, existing_data: pd.DataFrame) -> pd.DataFrame:
255
+ """合并新旧数据集"""
256
+ if existing_data.empty or "日期" not in existing_data.columns:
257
+ return new_data
258
+
259
+ new_min = new_data["日期"].min()
260
+ new_max = new_data["日期"].max()
261
+ valid_historical = existing_data[
262
+ (existing_data["日期"] < new_min) | (existing_data["日期"] > new_max)
263
+ ]
264
+ return pd.concat([new_data, valid_historical], ignore_index=True).drop_duplicates(subset=["日期"])
265
+
266
+ def _serialize_data(self, df: pd.DataFrame) -> str:
267
+ """序列化 DataFrame 并处理日期类型"""
268
+ temp_df = df.copy()
269
+ date_cols = temp_df.select_dtypes(include=["datetime64[ns]"]).columns
270
+ for col in date_cols:
271
+ temp_df[col] = temp_df[col].dt.strftime("%Y-%m-%d")
272
+ return temp_df.to_json(orient="records", force_ascii=False)
273
+
274
+
275
+ class RedisDataHash(object):
276
+ """
277
+ 存储 hash
278
+ Redis缓存与MySQL数据联合查询处理器
279
+
280
+ 功能特性:
281
+ - 支持带年份分表的MySQL数据查询
282
+ - 多级缓存策略(内存缓存+Redis缓存)
283
+ - 异步缓存更新机制
284
+ - 自动处理日期范围和数据类型转换
285
+ """
286
+
287
+ def __init__(self, redis_engine, download, cache_ttl: int):
288
+ """
289
+ 初始化缓存处理器
290
+
291
+ :param redis_engine: Redis连接实例
292
+ :param download: 数据下载处理器(需实现data_to_df方法)
293
+ :param cache_ttl: 缓存存活时间(单位:分钟,内部转换为秒存储)
294
+ """
295
+ self.redis_engine = redis_engine
296
+ self.download = download
297
+ self.cache_ttl = cache_ttl * 60 # 转换为秒存储
298
+
299
+ def get_from_mysql(
300
+ self,
301
+ db_name: str,
302
+ table_name: str,
303
+ set_year: bool,
304
+ start_date,
305
+ end_date
306
+ ) -> pd.DataFrame:
307
+ """
308
+ 从MySQL直接获取数据的核心方法
309
+
310
+ 处理逻辑:
311
+ 1. 当启用年份分表时(set_year=True),自动遍历2024到当前年份的所有分表
312
+ 2. 合并所有符合条件的数据表内容
313
+ 3. 自动处理日期列格式转换
314
+
315
+ :return: 合并后的DataFrame(可能包含多个分表数据)
316
+ """
317
+ # 原有实现保持不变
318
+ dfs = []
319
+ if set_year:
320
+ # 处理年份分表情况(例如 table_2024, table_2025...)
321
+ current_year = datetime.datetime.today().year
322
+ for year in range(2024, current_year + 1):
323
+ df = self._fetch_table_data(
324
+ db_name, f"{table_name}_{year}", start_date, end_date
325
+ )
326
+ if df is not None:
327
+ dfs.append(df)
328
+ else:
329
+ # 单表查询模式
330
+ df = self._fetch_table_data(db_name, table_name, start_date, end_date)
331
+ if df is not None:
332
+ dfs.append(df)
333
+
334
+ # 合并结果并处理空数据情况
335
+ combined_df = pd.concat(dfs, ignore_index=True) if dfs else pd.DataFrame()
336
+ if combined_df.empty:
337
+ logger.warn(f"warning: {db_name}.{table_name} 未读取到数据")
338
+ else:
339
+ combined_df = self._convert_date_columns(combined_df)
340
+ return combined_df
341
+
342
+ def get_from_redis(
343
+ self,
344
+ db_name: str,
345
+ table_name: str,
346
+ set_year: bool,
347
+ start_date,
348
+ end_date
349
+ ) -> pd.DataFrame:
350
+ """
351
+ 带缓存策略的数据获取主入口
352
+
353
+ 执行流程:
354
+ 1. 生成缓存键并检查TTL(存活时间)
355
+ 2. 当TTL<60秒时触发异步更新,同时直接访问MySQL获取最新数据
356
+ 3. 从Redis获取历史数据并进行日期过滤
357
+ 4. 若缓存数据不完整,触发异步更新并降级到MySQL查询
358
+ 5. 异常时自动降级到MySQL查询
359
+
360
+ 设计特点:
361
+ - 缓存预热:首次访问时异步更新缓存
362
+ - 降级机制:任何异常自动切换直连MySQL
363
+ - 过时缓存:当TTL不足时并行更新缓存
364
+ """
365
+ # 时分秒部分重置为 00:00:00 这是个巨坑,不可以省略
366
+ start_dt = pd.to_datetime(start_date).floor('D')
367
+ end_dt = pd.to_datetime(end_date).floor('D')
368
+ # 生成缓存键名
369
+ cache_key = self._generate_cache_key(db_name, table_name, set_year)
370
+
371
+ try:
372
+ # 检查缓存
373
+ ttl = self.redis_engine.ttl(cache_key)
374
+ if ttl < 60: # 当剩余时间不足1分钟时触发更新
375
+ # 获取当前缓存
376
+ cache_data = self._fetch_redis_data(cache_key)
377
+ # 异步更新缓存
378
+ self._trigger_async_cache_update(
379
+ cache_key, db_name, table_name, set_year, start_date, end_date, cache_data
380
+ )
381
+ # 立即降级返回MySQL查询
382
+ return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
383
+
384
+ # 按年份范围获取缓存数据(优化大数据量时的读取效率)
385
+ start_year = start_dt.year
386
+ end_year = end_dt.year
387
+ cache_data = self._fetch_redis_data(cache_key, start_year, end_year)
388
+ # 空数据检查(缓存未命中)
389
+ if cache_data.empty:
390
+ self._trigger_async_cache_update(
391
+ cache_key, db_name, table_name, set_year, start_date, end_date, cache_data
392
+ )
393
+ return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
394
+ # 按请求范围过滤数据(应对按年存储的粗粒度缓存)
395
+ filtered_df = self._filter_by_date_range(cache_data, start_dt, end_dt)
396
+ if not filtered_df.empty:
397
+ if '日期' in filtered_df.columns.tolist():
398
+ # 缓存数据的日期在请求日期范围内时,直接返回缓存数据
399
+ exsit_min_date = filtered_df['日期'].min()
400
+ if exsit_min_date <= start_dt:
401
+ return filtered_df
402
+ else:
403
+ return filtered_df
404
+ # 缓存数据不完整时触发异步更新缓存
405
+ self._trigger_async_cache_update(
406
+ cache_key, db_name, table_name, set_year, start_date, end_date, cache_data
407
+ )
408
+ # 立即降级返回MySQL查询
409
+ return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
410
+
411
+ except Exception as e:
412
+ # 异常策略:立即返回MySQL查询,保障服务可用
413
+ logger.error(f"Redis 连接异常: {e},直接访问 MySQL")
414
+ return self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
415
+
416
+ def set_redis(
417
+ self,
418
+ cache_key: str,
419
+ db_name: str,
420
+ table_name: str,
421
+ set_year: bool,
422
+ start_date,
423
+ end_date,
424
+ existing_data: pd.DataFrame
425
+ ) -> None:
426
+ """
427
+ 异步缓存更新方法
428
+
429
+ 核心逻辑:
430
+ 1. 获取MySQL最新数据
431
+ 2. 合并新旧数据(保留历史数据中不在新数据时间范围内的部分)
432
+ 3. 智能存储策略:
433
+ - 无日期字段:全量存储到"all"字段
434
+ - 有日期字段:按年份分片存储(提升查询效率)
435
+
436
+ 设计特点:
437
+ - 增量更新:仅合并必要数据,避免全量覆盖
438
+ - 数据分片:按年存储提升大数据的读取性能
439
+ - 容错处理:跳过无日期字段的异常情况
440
+ """
441
+ try:
442
+ # 获取最新数据(使用最新查询条件)
443
+ new_data = self.get_from_mysql(db_name, table_name, set_year, start_date, end_date)
444
+ if new_data.empty:
445
+ return
446
+
447
+ # 合并缓存数据
448
+ combined_data = self._merge_data(new_data, existing_data)
449
+
450
+ if not combined_data.empty:
451
+ # 处理无日期字段的特殊情况
452
+ if '日期' not in combined_data.columns.tolist():
453
+ # 数据序列化
454
+ serialized_data = self._serialize_data(combined_data)
455
+ self.redis_engine.hset(cache_key, "all", serialized_data)
456
+ self.redis_engine.expire(cache_key, self.cache_ttl)
457
+ else:
458
+ # 按年份分片存储策略
459
+ combined_data['年份'] = combined_data['日期'].dt.year
460
+ # 分组存储到Redis哈希的不同字段(例如2024字段存储当年数据)
461
+ for year, group in combined_data.groupby('年份'):
462
+ year_str = str(year)
463
+ serialized_data = self._serialize_data(group.drop(columns=['年份']))
464
+ self.redis_engine.hset(cache_key, year_str, serialized_data)
465
+ self.redis_engine.expire(cache_key, self.cache_ttl)
466
+ logger.info(f"缓存更新 {cache_key} | 数据量: {len(combined_data)}")
467
+ except Exception as e:
468
+ logger.error(f"缓存更新失败: {cache_key} - {str(e)}")
469
+
470
+ def _fetch_table_data(
471
+ self,
472
+ db_name: str,
473
+ table_name: str,
474
+ start_date,
475
+ end_date
476
+ ) -> pd.DataFrame:
477
+ """执行MySQL查询并返回DataFrame(带异常处理)"""
478
+ try:
479
+ return self.download.data_to_df(
480
+ db_name=db_name,
481
+ table_name=table_name,
482
+ start_date=start_date,
483
+ end_date=end_date,
484
+ projection={}
485
+ )
486
+ except Exception as e:
487
+ logger.info(f"MySQL 查询异常 {db_name}.{table_name}: {e}")
488
+ return pd.DataFrame()
489
+
490
+ def _fetch_redis_data(self, cache_key: str, start_year: int = None, end_year: int = None) -> pd.DataFrame:
491
+ """
492
+ 从Redis哈希表读取数据
493
+
494
+ 优化策略:
495
+ - 当指定年份范围时,仅获取相关字段(hmget)
496
+ - 未指定范围时全量获取(hgetall)
497
+ -- 从mysql过来的表,虽然没有日期列,但也指定了 start_year/end_year,再redis中存储的键名是"all",所以要把 all也加进去
498
+ """
499
+ try:
500
+ if start_year is not None and end_year is not None:
501
+ # 按年份范围精确获取字段(提升性能)
502
+ fields = [str(y) for y in range(start_year, end_year + 1)]
503
+ fields += ['all']
504
+ data_list = self.redis_engine.hmget(cache_key, fields)
505
+ dfs = []
506
+ for data, field in zip(data_list, fields):
507
+ if data:
508
+ df = pd.DataFrame(json.loads(data.decode("utf-8")))
509
+ df = self._convert_date_columns(df)
510
+ dfs.append(df)
511
+ return pd.concat(dfs, ignore_index=True) if dfs else pd.DataFrame()
512
+ else:
513
+ # 全量获取模式
514
+ data_dict = self.redis_engine.hgetall(cache_key)
515
+ dfs = []
516
+ for field, data in data_dict.items():
517
+ try:
518
+ df = pd.DataFrame(json.loads(data.decode("utf-8")))
519
+ df = self._convert_date_columns(df)
520
+ dfs.append(df)
521
+ except Exception as e:
522
+ logger.info(f"Redis 数据解析失败 {cache_key} 字段 {field}: {e}")
523
+ return pd.concat(dfs, ignore_index=True) if dfs else pd.DataFrame()
524
+ except Exception as e:
525
+ logger.info(f"Redis 数据获取失败 {cache_key}: {e}")
526
+ return pd.DataFrame()
527
+
528
+ def _convert_date_columns(self, df: pd.DataFrame) -> pd.DataFrame:
529
+ """统一日期列格式转换"""
530
+ if "日期" in df.columns:
531
+ df["日期"] = pd.to_datetime(df["日期"], format="%Y-%m-%d", errors="coerce")
532
+ return df
533
+
534
+ def _generate_cache_key(self, db_name: str, table_name: str, set_year: bool) -> str:
535
+ """生成缓存键名"""
536
+ return f"{db_name}:{table_name}_haveyear" if set_year else f"{db_name}:{table_name}"
537
+
538
+ def _filter_by_date_range(
539
+ self,
540
+ df: pd.DataFrame,
541
+ start_dt: datetime.datetime,
542
+ end_dt: datetime.datetime
543
+ ) -> pd.DataFrame:
544
+ """按日期范围精确过滤数据"""
545
+ if "日期" not in df.columns:
546
+ return df
547
+ date_mask = (df["日期"] >= start_dt) & (df["日期"] <= end_dt)
548
+ return df[date_mask].copy()
549
+
550
+ def _trigger_async_cache_update(
551
+ self,
552
+ cache_key: str,
553
+ db_name: str,
554
+ table_name: str,
555
+ set_year: bool,
556
+ start_date: str,
557
+ end_date: str,
558
+ existing_data: pd.DataFrame
559
+ ):
560
+ """启动异步线程执行缓存更新(不阻塞主流程)"""
561
+ thread = threading.Thread(
562
+ target=self.set_redis,
563
+ args=(cache_key, db_name, table_name, set_year, start_date, end_date, existing_data),
564
+ daemon=True
565
+ )
566
+ thread.start()
567
+
568
+ def _merge_data(self, new_data: pd.DataFrame, existing_data: pd.DataFrame) -> pd.DataFrame:
569
+ """合并新旧数据集策略:保留现有数据中在新数据范围外的历史数据,并按日期排序"""
570
+ if existing_data.empty or "日期" not in existing_data.columns:
571
+ return new_data
572
+ new_data["日期"] = pd.to_datetime(new_data["日期"])
573
+ existing_data["日期"] = pd.to_datetime(existing_data["日期"])
574
+
575
+ # 计算新数据日期范围
576
+ new_min = new_data["日期"].min()
577
+ new_max = new_data["日期"].max()
578
+
579
+ # 保留现有数据中在新数据范围之外的部分
580
+ valid_historical = existing_data[
581
+ (existing_data["日期"] < new_min) | (existing_data["日期"] > new_max)
582
+ ]
583
+ merged_data = pd.concat([new_data, valid_historical], ignore_index=True)
584
+ merged_data.sort_values(['日期'], ascending=[False], ignore_index=True, inplace=True)
585
+ return merged_data
586
+
587
+ def _serialize_data(self, df: pd.DataFrame) -> bytes:
588
+ """
589
+ 高性能数据序列化方法
590
+
591
+ 处理要点:
592
+ 1. 日期类型转换为字符串
593
+ 2. Decimal类型转换为浮点数
594
+ 3. NaN值统一转换为None
595
+ 4. 优化JSON序列化性能
596
+ """
597
+ if df.empty:
598
+ return json.dumps([], ensure_ascii=False).encode("utf-8")
599
+ temp_df = df.copy()
600
+
601
+ # 处理日期类型列(安全转换)
602
+ date_cols = temp_df.select_dtypes(include=["datetime64[ns]"]).columns
603
+ for col in date_cols:
604
+ # 处理全NaT列避免类型错误
605
+ if temp_df[col].isna().all():
606
+ temp_df[col] = temp_df[col].astype(object) # 转换为object类型避免NaT
607
+ temp_df[col] = (
608
+ temp_df[col]
609
+ .dt.strftime("%Y-%m-%d") # 安全使用dt访问器(因类型强制为datetime)
610
+ .where(temp_df[col].notna(), None)
611
+ )
612
+
613
+ # 统一空值处理(保护全None列类型)
614
+ def safe_null_convert(series):
615
+ """保留全None列的原始dtype"""
616
+ if series.isna().all():
617
+ return series.astype(object).where(pd.notnull(series), None)
618
+ return series.where(pd.notnull(series), None)
619
+
620
+ temp_df = temp_df.apply(safe_null_convert)
621
+
622
+ # 类型处理函数(增强嵌套结构处理)
623
+ def decimal_serializer(obj):
624
+ """递归序列化处理"""
625
+ # 提前处理None值
626
+ if obj is None:
627
+ return None
628
+
629
+ # 按类型分发处理
630
+ if isinstance(obj, Decimal):
631
+ return round(float(obj), 6)
632
+ elif isinstance(obj, pd.Timestamp):
633
+ return obj.strftime("%Y-%m-%d %H:%M:%S") # 兜底处理漏网之鱼
634
+ elif isinstance(obj, np.generic): # 处理所有numpy标量类型
635
+ return obj.item()
636
+ elif isinstance(obj, (datetime.date, datetime.datetime)):
637
+ return obj.isoformat()
638
+ elif isinstance(obj, (list, tuple, set)):
639
+ return [decimal_serializer(item) for item in obj]
640
+ elif isinstance(obj, dict):
641
+ return {decimal_serializer(k): decimal_serializer(v) for k, v in obj.items()}
642
+ elif isinstance(obj, bytes):
643
+ return obj.decode("utf-8", errors="replace") # 二进制安全处理
644
+ elif isinstance(obj, pd.Series): # 防止意外传入Series对象
645
+ return obj.to_list()
646
+ else:
647
+ # 尝试直接转换可序列化类型
648
+ try:
649
+ json.dumps(obj)
650
+ return obj
651
+ except TypeError:
652
+ logger.error(f"无法序列化类型 {type(obj)}: {str(obj)}")
653
+ raise
654
+
655
+ # 序列化前防御性检查
656
+ try:
657
+ data_records = temp_df.to_dict(orient="records")
658
+ except Exception as e:
659
+ logger.error(f"数据转换字典失败: {str(e)}")
660
+ raise
661
+
662
+ # 空记录特殊处理
663
+ if not data_records:
664
+ return json.dumps([], ensure_ascii=False).encode("utf-8")
665
+
666
+ # 执行序列化
667
+ try:
668
+ return json.dumps(
669
+ data_records,
670
+ ensure_ascii=False,
671
+ default=decimal_serializer
672
+ ).encode("utf-8")
673
+ except TypeError as e:
674
+ logger.error(f"序列化失败,请检查未处理的数据类型: {str(e)}")
675
+ raise
676
+
677
+
678
+ if __name__ == '__main__':
679
+ # # ****************************************************
680
+ # # 这一部分在外部定义,只需要定义一次,开始
681
+ # redis_config = {
682
+ # 'host': '127.0.0.1',
683
+ # 'port': 6379, # 默认Redis端口
684
+ # 'db': 0, # 默认Redis数据库索引
685
+ # # 'username': 'default',
686
+ # 'password': redis_password,
687
+ # }
688
+ # # redis 实例化
689
+ # r = redis.Redis(**redis_config)
690
+ # # mysql 实例化
691
+ # d = s_query.QueryDatas(username=username, password=password, host=host, port=port)
692
+ # # 将两个库的实例化对象传给 RedisData 类,并实例化数据处理引擎
693
+ # m = RedisData(redis_engin=r, download=d)
694
+ # # ****************************************************
695
+ #
696
+ # # 以下为动态获取数据库数据
697
+ # db_name = '聚合数据'
698
+ # table_name = '多店推广场景_按日聚合'
699
+ # set_year = False
700
+ # df = m.get_from_redis(
701
+ # db_name=db_name,
702
+ # table_name=table_name,
703
+ # set_year=set_year,
704
+ # start_date='2025-01-01',
705
+ # end_date='2025-01-31'
706
+ # )
707
+ # logger.info(df)
708
+ #
709
+
710
+ logger.info(socket.gethostname())
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.6.9
3
+ Version: 3.6.10
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -34,10 +34,11 @@ mdbq/pbix/pbix_refresh.py,sha256=JUjKW3bNEyoMVfVfo77UhguvS5AWkixvVhDbw4_MHco,239
34
34
  mdbq/pbix/refresh_all.py,sha256=OBT9EewSZ0aRS9vL_FflVn74d4l2G00wzHiikCC4TC0,5926
35
35
  mdbq/pbix/refresh_all_old.py,sha256=_pq3WSQ728GPtEG5pfsZI2uTJhU8D6ra-htIk1JXYzw,7192
36
36
  mdbq/redis/__init__.py,sha256=YtgBlVSMDphtpwYX248wGge1x-Ex_mMufz4-8W0XRmA,12
37
- mdbq/redis/getredis.py,sha256=q7omKJCPw_6Zr_r6WwTv4RGSXzZzpLPkIaqJ22svJhE,29104
37
+ mdbq/redis/getredis.py,sha256=pBgRyUrRmOlW-oXry3Hat9GahZgljvidNEDZJFn-geU,23932
38
+ mdbq/redis/getredis_优化hash.py,sha256=q7omKJCPw_6Zr_r6WwTv4RGSXzZzpLPkIaqJ22svJhE,29104
38
39
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
39
40
  mdbq/spider/aikucun.py,sha256=v7VO5gtEXR6_4Q6ujbTyu1FHu7TXHcwSQ6hIO249YH0,22208
40
- mdbq-3.6.9.dist-info/METADATA,sha256=m6rX1e31X7uhBfVC0ZE07nWd5EY4QVO6RZC93uAdr68,243
41
- mdbq-3.6.9.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
42
- mdbq-3.6.9.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
43
- mdbq-3.6.9.dist-info/RECORD,,
41
+ mdbq-3.6.10.dist-info/METADATA,sha256=D8ooXZMsVBNM_wbcXjE4xq2wHJU200gXHbEPkRpKioA,244
42
+ mdbq-3.6.10.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
43
+ mdbq-3.6.10.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
44
+ mdbq-3.6.10.dist-info/RECORD,,
File without changes