mdbq 3.6.23__py3-none-any.whl → 3.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,6 @@
1
1
  # -*- coding: UTF-8 –*-
2
2
  from mdbq.mongo import mongo
3
3
  from mdbq.mysql import mysql
4
- # from mdbq.config import myconfig
5
4
  from mdbq.config import default
6
5
  import socket
7
6
  import subprocess
@@ -12,23 +11,7 @@ import logging
12
11
  """
13
12
  对指定数据库所有冗余数据进行清理
14
13
  """
15
- m_engine, company_engine, ts_engine, (username, password, host, port) = default.get_engine()
16
- # username, password, host, port, service_database = None, None, None, None, None,
17
- # if socket.gethostname() in ['xigua_lx', 'xigua1', 'MacBookPro']:
18
- # conf = myconfig.main()
19
- # data = conf['Windows']['xigua_lx']['mysql']['local']
20
- # username, password, host, port = data['username'], data['password'], data['host'], data['port']
21
- # service_database = {'xigua_lx': 'mysql'}
22
- # elif socket.gethostname() in ['company', 'Mac2.local']:
23
- # conf = myconfig.main()
24
- # data = conf['Windows']['company']['mysql']['local']
25
- # username, password, host, port = data['username'], data['password'], data['host'], data['port']
26
- # service_database = {'company': 'mysql'}
27
- # elif socket.gethostname() == 'xigua_ts':
28
- # conf = myconfig.main()
29
- # data = conf['Windows']['xigua_ts']['mysql']['remoto']
30
- # username, password, host, port = data['username'], data['password'], data['host'], data['port']
31
- # service_database = {'xigua_ts': 'mysql'}
14
+ m_engine, username, password, host, port = default.get_mysql_engine(platform='Windows', hostname='xigua_lx', sql='mysql', local='remoto', config_file=None)
32
15
  if not username:
33
16
  logger.info(f'找不到主机:')
34
17
 
@@ -4,7 +4,6 @@ import socket
4
4
  from mdbq.mysql import mysql
5
5
  from mdbq.mysql import s_query
6
6
  from mdbq.aggregation import optimize_data
7
- from mdbq.config import myconfig
8
7
  from mdbq.config import products
9
8
  from mdbq.config import set_support
10
9
  from mdbq.config import default
@@ -27,8 +26,7 @@ import logging
27
26
 
28
27
  """
29
28
  error_file = os.path.join(set_support.SetSupport(dirname='support').dirname, 'error.log')
30
- m_engine, company_engine, ts_engine, (username, password, host, port) = default.get_engine()
31
-
29
+ m_engine, username, password, host, port = default.get_mysql_engine(platform='Windows', hostname='xigua_lx', sql='mysql', local='remoto', config_file=None)
32
30
  logger = logging.getLogger(__name__)
33
31
 
34
32
 
@@ -186,19 +184,6 @@ class MysqlDatasQuery:
186
184
  reset_id=True, # 是否重置自增列
187
185
  set_typ=set_typ,
188
186
  )
189
- company_engine.df_to_mysql(
190
- df=df,
191
- db_name=db_name,
192
- table_name=table_name,
193
- # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
194
- move_insert=True, # 先删除,再插入
195
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
196
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
197
- count=None,
198
- filename=None, # 用来追踪处理进度
199
- reset_id=True, # 是否重置自增列
200
- set_typ=set_typ,
201
- )
202
187
 
203
188
  # df_pic:商品排序索引表, 给 powerbi 中的主推款排序用的,(从上月1号到今天的总花费进行排序)
204
189
  today = datetime.date.today()
@@ -247,19 +232,6 @@ class MysqlDatasQuery:
247
232
  reset_id=False, # 是否重置自增列
248
233
  set_typ=set_typ,
249
234
  )
250
- company_engine.df_to_mysql(
251
- df=df_pic,
252
- db_name='属性设置3',
253
- table_name='商品索引表_主推排序调用',
254
- icm_update=['商品id'], # 增量更新, 在聚合数据中使用,其他不要用
255
- move_insert=False, # 先删除,再插入
256
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
257
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
258
- count=None,
259
- filename=None, # 用来追踪处理进度
260
- reset_id=False, # 是否重置自增列
261
- set_typ=set_typ,
262
- )
263
235
  return True
264
236
 
265
237
  def _tb_wxt(self, db_name='聚合数据', table_name='淘宝_主体报表', is_maximize=True):
@@ -371,19 +343,6 @@ class MysqlDatasQuery:
371
343
  reset_id=True, # 是否重置自增列
372
344
  set_typ=set_typ,
373
345
  )
374
- company_engine.df_to_mysql(
375
- df=df,
376
- db_name=db_name,
377
- table_name=table_name,
378
- # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
379
- move_insert=True, # 先删除,再插入
380
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
381
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
382
- count=None,
383
- filename=None, # 用来追踪处理进度
384
- reset_id=True, # 是否重置自增列
385
- set_typ=set_typ,
386
- )
387
346
  return True
388
347
 
389
348
  def _ald_wxt(self, db_name='聚合数据', table_name='奥莱店_主体报表', is_maximize=True):
@@ -495,19 +454,6 @@ class MysqlDatasQuery:
495
454
  reset_id=True, # 是否重置自增列
496
455
  set_typ=set_typ,
497
456
  )
498
- company_engine.df_to_mysql(
499
- df=df,
500
- db_name=db_name,
501
- table_name=table_name,
502
- # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
503
- move_insert=True, # 先删除,再插入
504
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
505
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
506
- count=None,
507
- filename=None, # 用来追踪处理进度
508
- reset_id=True, # 是否重置自增列
509
- set_typ=set_typ,
510
- )
511
457
  return True
512
458
 
513
459
  @try_except
@@ -605,19 +551,6 @@ class MysqlDatasQuery:
605
551
  reset_id=True, # 是否重置自增列
606
552
  set_typ=set_typ,
607
553
  )
608
- company_engine.df_to_mysql(
609
- df=df,
610
- db_name=db_name,
611
- table_name=table_name,
612
- # icm_update=['日期', '宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
613
- move_insert=True, # 先删除,再插入
614
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
615
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
616
- count=None,
617
- filename=None, # 用来追踪处理进度
618
- reset_id=True, # 是否重置自增列
619
- set_typ=set_typ,
620
- )
621
554
  return True
622
555
 
623
556
  @try_except
@@ -837,19 +770,6 @@ class MysqlDatasQuery:
837
770
  reset_id=True, # 是否重置自增列
838
771
  set_typ=set_typ,
839
772
  )
840
- company_engine.df_to_mysql(
841
- df=df,
842
- db_name=db_name,
843
- table_name=table_name,
844
- # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '人群名字'], # 增量更新, 在聚合数据中使用,其他不要用
845
- move_insert=True, # 先删除,再插入
846
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
847
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
848
- count=None,
849
- filename=None, # 用来追踪处理进度
850
- reset_id=True, # 是否重置自增列
851
- set_typ=set_typ,
852
- )
853
773
  return True
854
774
 
855
775
  @try_except
@@ -986,19 +906,6 @@ class MysqlDatasQuery:
986
906
  reset_id=True, # 是否重置自增列
987
907
  set_typ=set_typ,
988
908
  )
989
- company_engine.df_to_mysql(
990
- df=df,
991
- db_name=db_name,
992
- table_name=table_name,
993
- # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '词类型', '词名字_词包名字',], # 增量更新, 在聚合数据中使用,其他不要用
994
- move_insert=True, # 先删除,再插入
995
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
996
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
997
- count=None,
998
- filename=None, # 用来追踪处理进度
999
- reset_id=True, # 是否重置自增列
1000
- set_typ=set_typ,
1001
- )
1002
909
  return True
1003
910
 
1004
911
  @try_except
@@ -1124,19 +1031,6 @@ class MysqlDatasQuery:
1124
1031
  reset_id=True, # 是否重置自增列
1125
1032
  set_typ=set_typ,
1126
1033
  )
1127
- company_engine.df_to_mysql(
1128
- df=df,
1129
- db_name=db_name,
1130
- table_name=table_name,
1131
- # icm_update=['日期', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
1132
- move_insert=True, # 先删除,再插入
1133
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1134
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1135
- count=None,
1136
- filename=None, # 用来追踪处理进度
1137
- reset_id=True, # 是否重置自增列
1138
- set_typ=set_typ,
1139
- )
1140
1034
  return True
1141
1035
 
1142
1036
  @try_except
@@ -1250,19 +1144,6 @@ class MysqlDatasQuery:
1250
1144
  reset_id=True, # 是否重置自增列
1251
1145
  set_typ=set_typ,
1252
1146
  )
1253
- company_engine.df_to_mysql(
1254
- df=df,
1255
- db_name=db_name,
1256
- table_name=table_name,
1257
- # icm_update=['日期', '报表类型', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
1258
- move_insert=True, # 先删除,再插入
1259
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1260
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1261
- count=None,
1262
- filename=None, # 用来追踪处理进度
1263
- reset_id=True, # 是否重置自增列
1264
- set_typ=set_typ,
1265
- )
1266
1147
  return True
1267
1148
 
1268
1149
  @try_except
@@ -1320,19 +1201,6 @@ class MysqlDatasQuery:
1320
1201
  reset_id=True, # 是否重置自增列
1321
1202
  set_typ=set_typ,
1322
1203
  )
1323
- company_engine.df_to_mysql(
1324
- df=df,
1325
- db_name=db_name,
1326
- table_name=table_name,
1327
- icm_update=['宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
1328
- move_insert=False, # 先删除,再插入
1329
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1330
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1331
- count=None,
1332
- filename=None, # 用来追踪处理进度
1333
- reset_id=True, # 是否重置自增列
1334
- set_typ=set_typ,
1335
- )
1336
1204
  return True
1337
1205
 
1338
1206
  @try_except
@@ -1390,19 +1258,6 @@ class MysqlDatasQuery:
1390
1258
  reset_id=False, # 是否重置自增列
1391
1259
  set_typ=set_typ,
1392
1260
  )
1393
- company_engine.df_to_mysql(
1394
- df=df,
1395
- db_name=db_name,
1396
- table_name=table_name,
1397
- icm_update=['商品id'], # 增量更新, 在聚合数据中使用,其他不要用
1398
- move_insert=False, # 先删除,再插入
1399
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1400
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1401
- count=None,
1402
- filename=None, # 用来追踪处理进度
1403
- reset_id=False, # 是否重置自增列
1404
- set_typ=set_typ,
1405
- )
1406
1261
  return True
1407
1262
 
1408
1263
  def item_up(self, db_name='聚合数据', table_name='淘宝店铺货品'):
@@ -1467,19 +1322,6 @@ class MysqlDatasQuery:
1467
1322
  reset_id=True, # 是否重置自增列
1468
1323
  set_typ=set_typ,
1469
1324
  )
1470
- company_engine.df_to_mysql(
1471
- df=df,
1472
- db_name=db_name,
1473
- table_name=table_name,
1474
- # icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1475
- move_insert=True, # 先删除,再插入
1476
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1477
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1478
- count=None,
1479
- filename=None, # 用来追踪处理进度
1480
- reset_id=True, # 是否重置自增列
1481
- set_typ=set_typ,
1482
- )
1483
1325
 
1484
1326
 
1485
1327
  def spph(self, db_name='聚合数据', table_name='天猫_商品排行'):
@@ -1603,19 +1445,6 @@ class MysqlDatasQuery:
1603
1445
  reset_id=True, # 是否重置自增列
1604
1446
  set_typ=set_typ,
1605
1447
  )
1606
- company_engine.df_to_mysql(
1607
- df=df,
1608
- db_name=db_name,
1609
- table_name=table_name,
1610
- # icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1611
- move_insert=True, # 先删除,再插入
1612
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1613
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1614
- count=None,
1615
- filename=None, # 用来追踪处理进度
1616
- reset_id=True, # 是否重置自增列
1617
- set_typ=set_typ,
1618
- )
1619
1448
 
1620
1449
  # @try_except
1621
1450
  def dplyd(self, db_name='聚合数据', table_name='店铺流量来源构成'):
@@ -1726,19 +1555,6 @@ class MysqlDatasQuery:
1726
1555
  reset_id=True, # 是否重置自增列
1727
1556
  set_typ=set_typ,
1728
1557
  )
1729
- company_engine.df_to_mysql(
1730
- df=df,
1731
- db_name=db_name,
1732
- table_name=table_name,
1733
- # icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1734
- move_insert=True, # 先删除,再插入
1735
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1736
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1737
- count=None,
1738
- filename=None, # 用来追踪处理进度
1739
- reset_id=True, # 是否重置自增列
1740
- set_typ=set_typ,
1741
- )
1742
1558
  return True
1743
1559
 
1744
1560
  @try_except
@@ -1786,19 +1602,6 @@ class MysqlDatasQuery:
1786
1602
  reset_id=False, # 是否重置自增列
1787
1603
  set_typ=set_typ,
1788
1604
  )
1789
- company_engine.df_to_mysql(
1790
- df=df,
1791
- db_name=db_name,
1792
- table_name=table_name,
1793
- icm_update=['款号'], # 增量更新, 在聚合数据中使用,其他不要用
1794
- move_insert=False, # 先删除,再插入
1795
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1796
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1797
- count=None,
1798
- filename=None, # 用来追踪处理进度
1799
- reset_id=False, # 是否重置自增列
1800
- set_typ=set_typ,
1801
- )
1802
1605
  return True
1803
1606
 
1804
1607
  # @try_except
@@ -1904,67 +1707,6 @@ class MysqlDatasQuery:
1904
1707
  reset_id=True, # 是否重置自增列
1905
1708
  set_typ=set_typ,
1906
1709
  )
1907
- company_engine.df_to_mysql(
1908
- df=df,
1909
- db_name=db_name,
1910
- table_name=table_name,
1911
- # icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
1912
- move_insert=True, # 先删除,再插入
1913
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1914
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1915
- count=None,
1916
- filename=None, # 用来追踪处理进度
1917
- reset_id=True, # 是否重置自增列
1918
- set_typ=set_typ,
1919
- )
1920
-
1921
- # # 按照 spu 聚合
1922
- # df = df.groupby(
1923
- # ['日期', '店铺名称', 'spu_id'],
1924
- # as_index=False).agg(
1925
- # **{
1926
- # '花费': ('花费', np.sum),
1927
- # '展现数': ('展现数', np.sum),
1928
- # '点击数': ('点击数', np.sum),
1929
- # '直接订单行': ('直接订单行', np.sum),
1930
- # '直接订单金额': ('直接订单金额', np.sum),
1931
- # '总订单行': ('总订单行', np.sum),
1932
- # '总订单金额': ('总订单金额', np.sum),
1933
- # '直接加购数': ('直接加购数', np.sum),
1934
- # '总加购数': ('总加购数', np.sum),
1935
- # }
1936
- # )
1937
- # min_date = df['日期'].min()
1938
- # max_date = df['日期'].max()
1939
- # now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1940
- # logger.info(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/京东_京准通_按spu -> {min_date}~{max_date}')
1941
- # m_engine.df_to_mysql(
1942
- # df=df,
1943
- # db_name=db_name,
1944
- # table_name='京东_京准通_按spu',
1945
- # # icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
1946
- # move_insert=True, # 先删除,再插入
1947
- # df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1948
- # drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1949
- # count=None,
1950
- # filename=None, # 用来追踪处理进度
1951
- # reset_id=True, # 是否重置自增列
1952
- # set_typ=set_typ
1953
- # )
1954
- # company_engine.df_to_mysql(
1955
- # df=df,
1956
- # db_name=db_name,
1957
- # table_name='京东_京准通_按spu',
1958
- # # icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
1959
- # move_insert=True, # 先删除,再插入
1960
- # df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1961
- # drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1962
- # count=None,
1963
- # filename=None, # 用来追踪处理进度
1964
- # reset_id=True, # 是否重置自增列
1965
- # set_typ=set_typ
1966
- # )
1967
-
1968
1710
  return True
1969
1711
 
1970
1712
  @try_except
@@ -2034,19 +1776,6 @@ class MysqlDatasQuery:
2034
1776
  reset_id=True, # 是否重置自增列
2035
1777
  set_typ=set_typ
2036
1778
  )
2037
- company_engine.df_to_mysql(
2038
- df=df,
2039
- db_name=db_name,
2040
- table_name=table_name,
2041
- # icm_update=['日期', '产品线', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
2042
- move_insert=True, # 先删除,再插入
2043
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2044
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2045
- count=None,
2046
- filename=None, # 用来追踪处理进度
2047
- reset_id=True, # 是否重置自增列
2048
- set_typ=set_typ
2049
- )
2050
1779
  return True
2051
1780
 
2052
1781
  @try_except
@@ -2148,19 +1877,6 @@ class MysqlDatasQuery:
2148
1877
  reset_id=True, # 是否重置自增列
2149
1878
  set_typ=set_typ
2150
1879
  )
2151
- company_engine.df_to_mysql(
2152
- df=df,
2153
- db_name=db_name,
2154
- table_name=table_name,
2155
- # icm_update=['日期', '产品线', '搜索词', '关键词', '展现数', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
2156
- move_insert=True, # 先删除,再插入
2157
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2158
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2159
- count=None,
2160
- filename=None, # 用来追踪处理进度
2161
- reset_id=True, # 是否重置自增列
2162
- set_typ=set_typ
2163
- )
2164
1880
  return True
2165
1881
 
2166
1882
  @try_except
@@ -2240,19 +1956,6 @@ class MysqlDatasQuery:
2240
1956
  reset_id=True, # 是否重置自增列
2241
1957
  set_typ=set_typ,
2242
1958
  )
2243
- company_engine.df_to_mysql(
2244
- df=df,
2245
- db_name=db_name,
2246
- table_name=table_name,
2247
- # icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
2248
- move_insert=True, # 先删除,再插入
2249
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2250
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2251
- count=None,
2252
- filename=None, # 用来追踪处理进度
2253
- reset_id=True, # 是否重置自增列
2254
- set_typ=set_typ,
2255
- )
2256
1959
  return True
2257
1960
 
2258
1961
  @try_except
@@ -2324,19 +2027,6 @@ class MysqlDatasQuery:
2324
2027
  reset_id=True, # 是否重置自增列
2325
2028
  set_typ=set_typ
2326
2029
  )
2327
- company_engine.df_to_mysql(
2328
- df=df,
2329
- db_name=db_name,
2330
- table_name=table_name,
2331
- # icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
2332
- move_insert=True, # 先删除,再插入
2333
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2334
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2335
- count=None,
2336
- filename=None, # 用来追踪处理进度
2337
- reset_id=True, # 是否重置自增列
2338
- set_typ=set_typ
2339
- )
2340
2030
  return True
2341
2031
 
2342
2032
  @staticmethod
@@ -2425,19 +2115,6 @@ class MysqlDatasQuery:
2425
2115
  reset_id=True, # 是否重置自增列
2426
2116
  set_typ=set_typ,
2427
2117
  )
2428
- company_engine.df_to_mysql(
2429
- df=df,
2430
- db_name=db_name,
2431
- table_name=table_name,
2432
- # icm_update=['日期', '店铺名称', '词类型', '搜索词'], # 增量更新, 在聚合数据中使用,其他不要用
2433
- move_insert=True, # 先删除,再插入
2434
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2435
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2436
- count=None,
2437
- filename=None, # 用来追踪处理进度
2438
- reset_id=True, # 是否重置自增列
2439
- set_typ=set_typ,
2440
- )
2441
2118
  return True
2442
2119
 
2443
2120
  @try_except
@@ -2610,15 +2287,6 @@ class MysqlDatasQuery:
2610
2287
  main_key=None, # 指定索引列, 通常用日期列,默认会设置日期为索引
2611
2288
  set_typ=set_typ, # 指定数据类型
2612
2289
  )
2613
- company_engine.insert_many_dict(
2614
- db_name=db_name,
2615
- table_name=table_name,
2616
- dict_data_list=_results,
2617
- unique_main_key=None,
2618
- icm_update=['场次id'], # 唯一组合键
2619
- main_key=None, # 指定索引列, 通常用日期列,默认会设置日期为索引
2620
- set_typ=set_typ, # 指定数据类型
2621
- )
2622
2290
  return True
2623
2291
 
2624
2292
  # @try_except
@@ -2978,19 +2646,6 @@ class MysqlDatasQuery:
2978
2646
  reset_id=True, # 是否重置自增列
2979
2647
  set_typ=set_typ
2980
2648
  )
2981
- company_engine.df_to_mysql(
2982
- df=df,
2983
- db_name=db_name,
2984
- table_name=table_name,
2985
- # icm_update=['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量'], # 增量更新, 在聚合数据中使用,其他不要用
2986
- move_insert=True, # 先删除,再插入
2987
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2988
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2989
- count=None,
2990
- filename=None, # 用来追踪处理进度
2991
- reset_id=True, # 是否重置自增列
2992
- set_typ=set_typ
2993
- )
2994
2649
  return True
2995
2650
 
2996
2651
  @try_except
@@ -3081,19 +2736,6 @@ class MysqlDatasQuery:
3081
2736
  reset_id=True, # 是否重置自增列
3082
2737
  set_typ=set_typ
3083
2738
  )
3084
- company_engine.df_to_mysql(
3085
- df=df,
3086
- db_name=db_name,
3087
- table_name=table_name,
3088
- icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3089
- move_insert=True, # 先删除,再插入
3090
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3091
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3092
- count=None,
3093
- filename=None, # 用来追踪处理进度
3094
- reset_id=True, # 是否重置自增列
3095
- set_typ=set_typ
3096
- )
3097
2739
  return True
3098
2740
 
3099
2741
  def deeplink(self, db_name='聚合数据', table_name='达摩盘_deeplink人群洞察'):
@@ -3146,19 +2788,6 @@ class MysqlDatasQuery:
3146
2788
  reset_id=True, # 是否重置自增列
3147
2789
  set_typ=set_typ
3148
2790
  )
3149
- company_engine.df_to_mysql(
3150
- df=df,
3151
- db_name=db_name,
3152
- table_name=table_name,
3153
- # icm_update=['日期', '人群类型', '店铺名称', '人群规模', '广告投入金额'], # 增量更新, 在聚合数据中使用,其他不要用
3154
- move_insert=True, # 先删除,再插入
3155
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3156
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3157
- count=None,
3158
- filename=None, # 用来追踪处理进度
3159
- reset_id=True, # 是否重置自增列
3160
- set_typ=set_typ
3161
- )
3162
2791
  return True
3163
2792
 
3164
2793
  # @try_except
@@ -3271,19 +2900,6 @@ class MysqlDatasQuery:
3271
2900
  reset_id=True, # 是否重置自增列
3272
2901
  set_typ=set_typ,
3273
2902
  )
3274
- company_engine.df_to_mysql(
3275
- df=df,
3276
- db_name=db_name,
3277
- table_name=table_name,
3278
- icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3279
- move_insert=True, # 先删除,再插入
3280
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3281
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3282
- count=None,
3283
- filename=None, # 用来追踪处理进度
3284
- reset_id=True, # 是否重置自增列
3285
- set_typ=set_typ,
3286
- )
3287
2903
  return True
3288
2904
 
3289
2905
  @try_except
@@ -3696,19 +3312,6 @@ class MysqlDatasQuery:
3696
3312
  reset_id=True, # 是否重置自增列
3697
3313
  set_typ=set_typ,
3698
3314
  )
3699
- company_engine.df_to_mysql(
3700
- df=df,
3701
- db_name=db_name,
3702
- table_name=table_name,
3703
- icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3704
- move_insert=True, # 先删除,再插入
3705
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3706
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3707
- count=None,
3708
- filename=None, # 用来追踪处理进度
3709
- reset_id=True, # 是否重置自增列
3710
- set_typ=set_typ,
3711
- )
3712
3315
  return True
3713
3316
 
3714
3317
  # @try_except
@@ -3819,19 +3422,6 @@ class MysqlDatasQuery:
3819
3422
  reset_id=True, # 是否重置自增列
3820
3423
  set_typ=set_typ,
3821
3424
  )
3822
- company_engine.df_to_mysql(
3823
- df=df,
3824
- db_name=db_name,
3825
- table_name=table_name,
3826
- icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3827
- move_insert=True, # 先删除,再插入
3828
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3829
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3830
- count=None,
3831
- filename=None, # 用来追踪处理进度
3832
- reset_id=True, # 是否重置自增列
3833
- set_typ=set_typ,
3834
- )
3835
3425
  return True
3836
3426
 
3837
3427
  # @try_except
@@ -3903,19 +3493,6 @@ class MysqlDatasQuery:
3903
3493
  reset_id=True, # 是否重置自增列
3904
3494
  set_typ=set_typ,
3905
3495
  )
3906
- company_engine.df_to_mysql(
3907
- df=df,
3908
- db_name=db_name,
3909
- table_name=table_name,
3910
- icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3911
- move_insert=True, # 先删除,再插入
3912
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3913
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3914
- count=None,
3915
- filename=None, # 用来追踪处理进度
3916
- reset_id=True, # 是否重置自增列
3917
- set_typ=set_typ,
3918
- )
3919
3496
  return True
3920
3497
 
3921
3498
 
@@ -4016,17 +3593,6 @@ def date_table():
4016
3593
  filename=None, # 用来追踪处理进度
4017
3594
  set_typ=set_typ,
4018
3595
  )
4019
- company_engine.df_to_mysql(
4020
- df=df,
4021
- db_name='聚合数据',
4022
- table_name='日期表',
4023
- move_insert=True, # 先删除,再插入
4024
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
4025
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
4026
- count=None,
4027
- filename=None, # 用来追踪处理进度
4028
- set_typ=set_typ,
4029
- )
4030
3596
 
4031
3597
 
4032
3598
  def query1(months=1, less_dict=[]):
mdbq/config/default.py CHANGED
@@ -8,25 +8,30 @@ import logging
8
8
  from mdbq.mysql import mysql
9
9
 
10
10
  if platform.system() == 'Windows':
11
- support_path = r'C:\同步空间\BaiduSyncdisk\自动0备份\py\数据更新\support'
11
+ support_path = r'C:\数据中心2\support'
12
12
  elif platform.system() == 'Darwin':
13
- support_path = f'/Users/{getpass.getuser()}/数据中心/自动0备份/py/数据更新/support'
13
+ support_path = f'/Users/{getpass.getuser()}/数据中心2/support'
14
14
  else:
15
- support_path = '数据中心/数据更新/support' # 没有用可以删
15
+ support_path = '数据中心2/support' # 没有用, 可以删
16
16
  logger = logging.getLogger(__name__)
17
17
 
18
18
 
19
- def get_mysql_engine(platform, hostname, sql, local, config_file=None):
19
+ def get_mysql_engine(platform='Windows', hostname='xigua_lx', sql='mysql', local='remoto', config_file=None):
20
20
  if not config_file:
21
21
  config_file = os.path.join(support_path, 'my_config.txt')
22
22
  if not os.path.isfile(config_file):
23
23
  print(f'缺少配置文件,无法读取配置文件: {config_file}')
24
24
  return None
25
+
26
+ if socket.gethostname() == 'xigua_lx':
27
+ local = 'local'
28
+
25
29
  with open(config_file, 'r', encoding='utf-8') as f:
26
30
  conf = json.load(f)
27
31
  conf_data = conf[platform][hostname][sql][local]
28
32
  username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
29
- return mysql.MysqlUpload(username=username, password=password, host=host, port=port, charset='utf8mb4')
33
+ _engine = mysql.MysqlUpload(username=username, password=password, host=host, port=port, charset='utf8mb4')
34
+ return _engine, username, password, host, port
30
35
 
31
36
 
32
37
  def return_host(conf_data):
@@ -57,7 +62,10 @@ def get_hostname(platform, hostname, sql, local):
57
62
  return return_host(conf_data)
58
63
 
59
64
 
60
- def get_engine():
65
+ def get_engine_bak():
66
+ """
67
+ 要删除
68
+ """
61
69
  if not os.path.isdir(support_path):
62
70
  print(f'缺少配置文件,无法读取配置文件: {file}')
63
71
  return
mdbq/config/myconfig.py CHANGED
@@ -2,7 +2,9 @@
2
2
  import os
3
3
  import json
4
4
  from mdbq.config import set_support
5
-
5
+ """
6
+ 用来读取本地配置文件
7
+ """
6
8
 
7
9
 
8
10
  def main():
mdbq/config/products.py CHANGED
@@ -6,7 +6,6 @@ import getpass
6
6
  import socket
7
7
  import pandas as pd
8
8
  from mdbq.mysql import mysql
9
- # from mdbq.config import myconfig
10
9
  from mdbq.config import default
11
10
  from numpy.ma.core import product
12
11
 
@@ -14,18 +13,7 @@ from numpy.ma.core import product
14
13
  天猫货品年份基准对照
15
14
  用于聚合数据,通过此数据表进一步可确定商品上架年月
16
15
  """
17
- m_engine, company_engine, ts_engine, (username, password, host, port) = default.get_engine()
18
- # username, password, host, port, service_database = None, None, None, None, None,
19
- # if socket.gethostname() in ['xigua_lx', 'xigua1', 'MacBookPro']:
20
- # conf = myconfig.main()
21
- # data = conf['Windows']['xigua_lx']['mysql']['local']
22
- # username, password, host, port = data['username'], data['password'], data['host'], data['port']
23
- # service_database = {'xigua_lx': 'mysql'}
24
- # elif socket.gethostname() in ['company', 'Mac2.local']:
25
- # conf = myconfig.main()
26
- # data = conf['Windows']['company']['mysql']['local']
27
- # username, password, host, port = data['username'], data['password'], data['host'], data['port']
28
- # service_database = {'company': 'mysql'}
16
+ m_engine, username, password, host, port = default.get_mysql_engine(platform='Windows', hostname='xigua_lx', sql='mysql', local='remoto', config_file=None)
29
17
  if not username:
30
18
  print(f'找不到主机1:')
31
19
 
@@ -50,24 +50,7 @@ upload_path = os.path.join(D_PATH, '数据上传中心') # 此目录位于下
50
50
  if not os.path.exists(upload_path): # 数据中心根目录
51
51
  os.makedirs(upload_path)
52
52
 
53
- m_engine, company_engine, ts_engine, (username, password, host, port) = default.get_engine()
54
- # username, password, host, port, service_database = None, None, None, None, None,
55
- # if socket.gethostname() in ['xigua_lx', 'xigua1', 'MacBookPro']:
56
- # conf = myconfig.main()
57
- # conf_data = conf['Windows']['xigua_lx']['mysql']['local']
58
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
59
- # service_database = {'xigua_lx': 'mysql'}
60
- # elif socket.gethostname() in ['company', 'Mac2.local']:
61
- # conf = myconfig.main()
62
- # conf_data = conf['Windows']['company']['mysql']['local']
63
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
64
- # service_database = {'company': 'mysql'}
65
- # elif socket.gethostname() == 'xigua_ts':
66
- # conf = myconfig.main()
67
- # conf_data = conf['Windows']['xigua_ts']['mysql']['remote']
68
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
69
- # service_database = {'xigua_ts': 'mysql'}
70
-
53
+ m_engine, username, password, host, port = default.get_mysql_engine(platform='Windows', hostname='xigua_lx', sql='mysql', local='remoto', config_file=None)
71
54
  if not username:
72
55
  print(f'找不到主机:')
73
56
 
mdbq/redis/getredis.py CHANGED
@@ -22,33 +22,7 @@ if platform.system() == 'Windows':
22
22
  else:
23
23
  D_PATH = os.path.join(f'/Users/{getpass.getuser()}/Downloads')
24
24
 
25
-
26
- m_engine, company_engine, ts_engine, (username, password, host, port) = default.get_engine()
27
-
28
- a, redis_password, c, d = default.get_hostname('Windows', 'xigua_lx', 'redis', 'local')
29
-
30
- # if socket.gethostname() == 'company' or socket.gethostname() == 'Mac2.local':
31
- # conf = myconfig.main()
32
- # conf_data = conf['Windows']['company']['mysql']['local']
33
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
34
- # redis_password = conf['Windows']['company']['redis']['local']['password']
35
- # elif socket.gethostname() == 'MacBookPro':
36
- # conf = myconfig.main()
37
- # conf_data = conf['Windows']['xigua_lx']['mysql']['local']
38
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
39
- # redis_password = conf['Windows']['company']['redis']['local']['password']
40
- # elif socket.gethostname() == 'xigua_ts':
41
- # conf = myconfig.main()
42
- # conf_data = conf['Windows']['xigua_ts']['mysql']['remote']
43
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
44
- # redis_password = conf['Windows']['xigua_ts']['redis']['local']['password']
45
- # else:
46
- # conf = myconfig.main()
47
- # conf_data = conf['Windows']['xigua_lx']['mysql']['local']
48
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
49
- # redis_password = conf['Windows']['company']['redis']['local']['password'] # redis 使用本地数据,全部机子相同
50
-
51
- # logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(levelname)s | %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
25
+ m_engine, username, password, host, port = default.get_mysql_engine(platform='Windows', hostname='xigua_lx', sql='mysql', local='remoto', config_file=None)
52
26
 
53
27
  # 获取当前模块的日志记录器
54
28
  logger = logging.getLogger(__name__)
@@ -647,7 +621,7 @@ if __name__ == '__main__':
647
621
  # r = redis.Redis(**redis_config)
648
622
  # # mysql 实例化
649
623
  # d = s_query.QueryDatas(username=username, password=password, host=host, port=port)
650
- # # 将两个库的实例化对象传给 RedisData 类,并实例化数据处理引擎
624
+ # # 将两个库的实例化对传给 RedisData 类,并实例化数据处理引擎
651
625
  # m = RedisData(redis_engin=r, download=d)
652
626
  # # ****************************************************
653
627
  #
mdbq/spider/aikucun.py CHANGED
@@ -36,55 +36,7 @@ else:
36
36
  D_PATH = str(pathlib.Path(f'/Users/{getpass.getuser()}/Downloads'))
37
37
  upload_path = os.path.join(D_PATH, '数据上传中心', '爱库存') # 此目录位于下载文件夹
38
38
 
39
- m_engine, company_engine, ts_engine, (username, password, host, port) = default.get_engine()
40
- # m_engine = mysql.MysqlUpload(username='', password='', host='', port=0, charset='utf8mb4')
41
- # company_engine = mysql.MysqlUpload(username='', password='', host='', port=0, charset='utf8mb4')
42
- #
43
- # if socket.gethostname() == 'company' or socket.gethostname() == 'Mac2.local':
44
- # conf = myconfig.main()
45
- # conf_data = conf['Windows']['xigua_lx']['mysql']['remoto']
46
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
47
- # m_engine = mysql.MysqlUpload(
48
- # username=username,
49
- # password=password,
50
- # host=host,
51
- # port=port,
52
- # charset='utf8mb4'
53
- # )
54
- # conf_data = conf['Windows']['company']['mysql']['local']
55
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
56
- # company_engine = mysql.MysqlUpload(
57
- # username=username,
58
- # password=password,
59
- # host=host,
60
- # port=port,
61
- # charset='utf8mb4'
62
- # )
63
- # targe_host = 'company'
64
- #
65
- # else:
66
- # conf = myconfig.main()
67
- #
68
- # conf_data = conf['Windows']['company']['mysql']['remoto']
69
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
70
- # company_engine = mysql.MysqlUpload(
71
- # username=username,
72
- # password=password,
73
- # host=host,
74
- # port=port,
75
- # charset='utf8mb4'
76
- # )
77
- #
78
- # conf_data = conf['Windows']['xigua_lx']['mysql']['local']
79
- # username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
80
- # m_engine = mysql.MysqlUpload(
81
- # username=username,
82
- # password=password,
83
- # host=host,
84
- # port=port,
85
- # charset='utf8mb4'
86
- # )
87
- # targe_host = 'xigua_lx'
39
+ m_engine, username, password, host, port = default.get_mysql_engine(platform='Windows', hostname='xigua_lx', sql='mysql', local='remoto', config_file=None)
88
40
 
89
41
 
90
42
  def get_cookie_aikucun():
@@ -406,14 +358,6 @@ class AikuCun:
406
358
  unique_main_key=None,
407
359
  set_typ=set_typ,
408
360
  )
409
- company_engine.insert_many_dict(
410
- db_name='爱库存2',
411
- table_name='商品spu榜单',
412
- dict_data_list=_results,
413
- icm_update=['日期', '店铺名称', 'spu_id', '商品款号'],
414
- unique_main_key=None,
415
- set_typ=set_typ,
416
- )
417
361
 
418
362
  new_name = f'爱库存_商品榜单_spu_{date}_{date}.csv'
419
363
  df.to_csv(os.path.join(root, new_name), encoding='utf-8_sig', index=False)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.6.23
3
+ Version: 3.7.0
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -3,14 +3,14 @@ mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
3
3
  mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
4
4
  mdbq/aggregation/aggregation_bak.py,sha256=-yzApnlqSN2L0E1YMu5ml-W827qpKQvWPCOI7jj2kzY,80264
5
5
  mdbq/aggregation/datashow_bak.py,sha256=1AYSIDkdUx-4as1Ax2rPj0cExM9d-qFMrFYLAaPHNuk,54962
6
- mdbq/aggregation/optimize_data.py,sha256=JXdhVHQmtULZrV8wizlj6oyP8Ry4lwqoLlA5xV8ILNo,3589
7
- mdbq/aggregation/query_data.py,sha256=bxRWBk5JTCfr6-15P77iXOEy81KkuWVZenYfI3VIV1k,191782
6
+ mdbq/aggregation/optimize_data.py,sha256=foZGLDGJRhM2qOr2mTvB3InDFId7r4KBXrJfB3-xq1k,2639
7
+ mdbq/aggregation/query_data.py,sha256=AiG0W9Rum_hKCTPNB-nuA5ehpnVW12byLA7uwzOmO6Q,168639
8
8
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
9
9
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
10
10
  mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
11
- mdbq/config/default.py,sha256=3aSdPjKcfNGTpbNN3bTTVeqkT88pDK7nWYus3Qyo_Wk,4855
12
- mdbq/config/myconfig.py,sha256=EGymTlAimtHIDJ9egCtOehBEPOj6rea504kvsEZu64o,854
13
- mdbq/config/products.py,sha256=UAPcS0CbKmHribxgwtqiAsVICkuGLrizLDT6zbf4kFY,6353
11
+ mdbq/config/default.py,sha256=3IGc4aVuoL6sZh7xkM0GUXwHJD3-HCfYTnb1Q5ZL1UM,4976
12
+ mdbq/config/myconfig.py,sha256=Akt-7KqSUBdoHQa4_Mw6YC4pA75219d-21iDO30iaD8,894
13
+ mdbq/config/products.py,sha256=FbBIqmyaiq9h03FIeE9W2bwbLm2_5pr6xyzPV-u7Ges,5689
14
14
  mdbq/config/set_support.py,sha256=6EJC1PUCvP8HnRsljOrlBbK-65lZjh8_8mCCOVoPkFM,691
15
15
  mdbq/dataframe/__init__.py,sha256=2HtCN8AdRj53teXDqzysC1h8aPL-mMFy561ESmhehGQ,22
16
16
  mdbq/dataframe/converter.py,sha256=lETYhT7KXlWzWwqguqhk6vI6kj4rnOBEW1lhqKy2Abc,5035
@@ -23,7 +23,7 @@ mdbq/mysql/mysql.py,sha256=YgmSLkwjIUpjiGH3S-bTiaJCKe8As0WvHDOS6_ePyYs,98591
23
23
  mdbq/mysql/s_query.py,sha256=pj5ioJfUT81Su9S-km9G49gF5F2MmXXfw_oAIUzhN28,8794
24
24
  mdbq/mysql/year_month_day.py,sha256=VgewoE2pJxK7ErjfviL_SMTN77ki8GVbTUcao3vFUCE,1523
25
25
  mdbq/other/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
26
- mdbq/other/download_sku_picture.py,sha256=lG6S8u0nR1yAVnTHkNPwJb5ZMrO_IvVkkqvhKynSR58,45630
26
+ mdbq/other/download_sku_picture.py,sha256=QglvUmI6rFYtfwG59uuOqAA4kLwuKtCwgkz7yO_KkPs,44656
27
27
  mdbq/other/porxy.py,sha256=UHfgEyXugogvXgsG68a7QouUCKaohTKKkI4RN-kYSdQ,4961
28
28
  mdbq/other/pov_city.py,sha256=AEOmCOzOwyjHi9LLZWPKi6DUuSC-_M163664I52u9qw,21050
29
29
  mdbq/other/sku_picture.py,sha256=JwSXYlzamVqcKCD2tRH2VqYVZNr8fM6f--kcGlTVRnM,50026
@@ -33,10 +33,10 @@ mdbq/pbix/pbix_refresh.py,sha256=JUjKW3bNEyoMVfVfo77UhguvS5AWkixvVhDbw4_MHco,239
33
33
  mdbq/pbix/refresh_all.py,sha256=OBT9EewSZ0aRS9vL_FflVn74d4l2G00wzHiikCC4TC0,5926
34
34
  mdbq/pbix/refresh_all_old.py,sha256=_pq3WSQ728GPtEG5pfsZI2uTJhU8D6ra-htIk1JXYzw,7192
35
35
  mdbq/redis/__init__.py,sha256=YtgBlVSMDphtpwYX248wGge1x-Ex_mMufz4-8W0XRmA,12
36
- mdbq/redis/getredis.py,sha256=qbNrXv_M1KpTpC5WR-E-E-NkLGNkWWTmQFqwqV17SKk,27223
36
+ mdbq/redis/getredis.py,sha256=oyFwE-8c6uErSGYNIO0z2ng93mH0zstRLD86MWqF6M8,25636
37
37
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
38
- mdbq/spider/aikucun.py,sha256=w-qbSuzzVL5e3XsLj_ylOEEpGGAeT1k9ql07KIDwTo8,21609
39
- mdbq-3.6.23.dist-info/METADATA,sha256=rlcJ2mzeLyGqqumRMbrgpsZcOE_oOkcmbPtjq9npmPM,244
40
- mdbq-3.6.23.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
41
- mdbq-3.6.23.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
42
- mdbq-3.6.23.dist-info/RECORD,,
38
+ mdbq/spider/aikucun.py,sha256=1gAEwCUmhCSpOSRPD2EEcbH3bFGn4sUQnQUAsJb5-qM,19391
39
+ mdbq-3.7.0.dist-info/METADATA,sha256=0uGaC5cgZEGGQq_U5XmvMzgUtGMK0o8_3CyLq4lKgpU,243
40
+ mdbq-3.7.0.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
41
+ mdbq-3.7.0.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
42
+ mdbq-3.7.0.dist-info/RECORD,,
File without changes