mdbq 3.5.7__py3-none-any.whl → 3.5.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -569,6 +569,7 @@ class MysqlDatasQuery:
569
569
  '退款额_发货后': 1,
570
570
  '退货量_发货后': 1,
571
571
  '店铺名称': 1,
572
+ '更新时间': 1,
572
573
  }
573
574
  __res = []
574
575
  for year in range(2024, datetime.datetime.today().year + 1):
@@ -582,17 +583,21 @@ class MysqlDatasQuery:
582
583
  __res.append(df)
583
584
  df = pd.concat(__res, ignore_index=True)
584
585
  df['宝贝id'] = df['宝贝id'].astype(str)
585
- df = df.groupby(['日期', '店铺名称', '宝贝id', '行业类目'], as_index=False).agg(
586
- **{
587
- '销售额': ('销售额', np.min),
588
- '销售量': ('销售量', np.min),
589
- '订单数': ('订单数', np.min),
590
- '退货量': ('退货量', np.max),
591
- '退款额': ('退款额', np.max),
592
- '退款额_发货后': ('退款额_发货后', np.max),
593
- '退货量_发货后': ('退货量_发货后', np.max),
594
- }
595
- )
586
+ # df = df.groupby(['日期', '店铺名称', '宝贝id', '行业类目'], as_index=False).agg(
587
+ # **{
588
+ # '销售额': ('销售额', np.min),
589
+ # '销售量': ('销售量', np.min),
590
+ # '订单数': ('订单数', np.min),
591
+ # '退货量': ('退货量', np.max),
592
+ # '退款额': ('退款额', np.max),
593
+ # '退款额_发货后': ('退款额_发货后', np.max),
594
+ # '退货量_发货后': ('退货量_发货后', np.max),
595
+ # }
596
+ # )
597
+ # 仅保留最新日期的数据
598
+ idx = df.groupby(['日期', '店铺名称', '宝贝id'])['更新时间'].idxmax()
599
+ df = df.loc[idx]
600
+ df = df[['日期', '店铺名称', '宝贝id', '行业类目', '销售额', '销售量', '订单数', '退货量', '退款额', '退款额_发货后', '退货量_发货后']]
596
601
  df['件均价'] = df.apply(lambda x: x['销售额'] / x['销售量'] if x['销售量'] > 0 else 0, axis=1).round(
597
602
  0) # 两列运算, 避免除以0
598
603
  df['价格带'] = df['件均价'].apply(
@@ -2226,13 +2231,17 @@ class MysqlDatasQuery:
2226
2231
  __res.append(df)
2227
2232
  df = pd.concat(__res, ignore_index=True)
2228
2233
  df = df[df['商品id'] != '合计']
2229
- df = df.groupby(['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'],
2230
- as_index=False).agg(
2231
- **{
2232
- '成交单量': ('成交单量', np.max),
2233
- '成交金额': ('成交金额', np.max),
2234
- }
2235
- )
2234
+ # df = df.groupby(['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'],
2235
+ # as_index=False).agg(
2236
+ # **{
2237
+ # '成交单量': ('成交单量', np.max),
2238
+ # '成交金额': ('成交金额', np.max),
2239
+ # }
2240
+ # )
2241
+ # 仅保留最新日期的数据
2242
+ idx = df.groupby(['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'])['更新时间'].idxmax()
2243
+ df = df.loc[idx]
2244
+ df = df[['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数', '成交单量', '成交金额']]
2236
2245
  self.pf_datas_jd.append(
2237
2246
  {
2238
2247
  '集合名称': table_name,
@@ -2313,13 +2322,17 @@ class MysqlDatasQuery:
2313
2322
  __res.append(df)
2314
2323
  df = pd.concat(__res, ignore_index=True)
2315
2324
  df = df[df['商品id'] != '合计']
2316
- df = df.groupby(['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'],
2317
- as_index=False).agg(
2318
- **{
2319
- '成交单量': ('成交单量', np.max),
2320
- '成交金额': ('成交金额', np.max),
2321
- }
2322
- )
2325
+ # df = df.groupby(['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'],
2326
+ # as_index=False).agg(
2327
+ # **{
2328
+ # '成交单量': ('成交单量', np.max),
2329
+ # '成交金额': ('成交金额', np.max),
2330
+ # }
2331
+ # )
2332
+ # 仅保留最新日期的数据
2333
+ idx = df.groupby(['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'])['更新时间'].idxmax()
2334
+ df = df.loc[idx]
2335
+ df = df[['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数', '成交单量', '成交金额']]
2323
2336
  set_typ = {
2324
2337
  '日期': 'date',
2325
2338
  '店铺名称': 'varchar(100)',
@@ -2391,6 +2404,7 @@ class MysqlDatasQuery:
2391
2404
  '新访客': 1,
2392
2405
  '客单价': 1,
2393
2406
  'uv价值': 1,
2407
+ '更新时间': 1,
2394
2408
  }
2395
2409
  __res = []
2396
2410
  for year in range(2024, datetime.datetime.today().year+1):
@@ -2403,19 +2417,23 @@ class MysqlDatasQuery:
2403
2417
  )
2404
2418
  __res.append(df)
2405
2419
  df = pd.concat(__res, ignore_index=True)
2406
- df = df.groupby(
2407
- ['日期', '店铺名称', '词类型', '搜索词'],
2408
- as_index=False).agg(
2409
- **{
2410
- '访客数': ('访客数', np.max),
2411
- '加购人数': ('加购人数', np.max),
2412
- '支付金额': ('支付金额', np.max),
2413
- '支付转化率': ('支付转化率', np.max),
2414
- '支付买家数': ('支付买家数', np.max),
2415
- '客单价': ('客单价', np.max),
2416
- 'uv价值': ('uv价值', np.max)
2417
- }
2418
- )
2420
+ # df = df.groupby(
2421
+ # ['日期', '店铺名称', '词类型', '搜索词'],
2422
+ # as_index=False).agg(
2423
+ # **{
2424
+ # '访客数': ('访客数', np.max),
2425
+ # '加购人数': ('加购人数', np.max),
2426
+ # '支付金额': ('支付金额', np.max),
2427
+ # '支付转化率': ('支付转化率', np.max),
2428
+ # '支付买家数': ('支付买家数', np.max),
2429
+ # '客单价': ('客单价', np.max),
2430
+ # 'uv价值': ('uv价值', np.max)
2431
+ # }
2432
+ # )
2433
+ idx = df.groupby(['日期', '店铺名称', '词类型', '搜索词'])['更新时间'].idxmax()
2434
+ df = df.loc[idx]
2435
+ df = df[['日期', '店铺名称', '词类型', '搜索词', '访客数', '加购人数', '支付金额', '支付转化率', '支付买家数', '客单价', 'uv价值']]
2436
+
2419
2437
  set_typ = {
2420
2438
  '日期': 'date',
2421
2439
  '店铺名称': 'varchar(100)',
@@ -4179,5 +4197,5 @@ if __name__ == '__main__':
4179
4197
  # )
4180
4198
 
4181
4199
  sdq = MysqlDatasQuery() # 实例化数据处理类
4182
- sdq.months = 3
4183
- sdq._ald_wxt(db_name='聚合数据', table_name='奥莱店_主体报表')
4200
+ sdq.months = 3 # 设置数据周期, 1 表示近 2 个月
4201
+ sdq.se_search(db_name='聚合数据', table_name='天猫店铺来源_手淘搜索')
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.5.7
3
+ Version: 3.5.9
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -4,7 +4,7 @@ mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,
4
4
  mdbq/aggregation/aggregation.py,sha256=-yzApnlqSN2L0E1YMu5ml-W827qpKQvWPCOI7jj2kzY,80264
5
5
  mdbq/aggregation/datashow.py,sha256=1AYSIDkdUx-4as1Ax2rPj0cExM9d-qFMrFYLAaPHNuk,54962
6
6
  mdbq/aggregation/optimize_data.py,sha256=RXIv7cACCgYyehAxMjUYi_S7rVyjIwXKWMaM3nduGtA,3068
7
- mdbq/aggregation/query_data.py,sha256=Zsbt2LykpqRblIZhiSW1rgs41zygC8InefH0zpNIWp8,191284
7
+ mdbq/aggregation/query_data.py,sha256=3sQgiMcsQU5QzBvokmc3ED-UMlaQLkbKE-gLvE-XyvA,192951
8
8
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
9
9
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
10
10
  mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
@@ -36,7 +36,7 @@ mdbq/redis/__init__.py,sha256=YtgBlVSMDphtpwYX248wGge1x-Ex_mMufz4-8W0XRmA,12
36
36
  mdbq/redis/getredis.py,sha256=PlWAGMC-WqdZtyvtjjj-i0i8AiBsNP6zgAUb5Fdkark,8481
37
37
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
38
38
  mdbq/spider/aikucun.py,sha256=v7VO5gtEXR6_4Q6ujbTyu1FHu7TXHcwSQ6hIO249YH0,22208
39
- mdbq-3.5.7.dist-info/METADATA,sha256=2vbVtGiIZ0FKagUbtistkxCiI5m3Iwbh8c-kTpWEkSk,243
40
- mdbq-3.5.7.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
41
- mdbq-3.5.7.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
42
- mdbq-3.5.7.dist-info/RECORD,,
39
+ mdbq-3.5.9.dist-info/METADATA,sha256=MplUpnGT5l0iy7c7S8GxQ6TlUEgLibOVJdcIp487lis,243
40
+ mdbq-3.5.9.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
41
+ mdbq-3.5.9.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
42
+ mdbq-3.5.9.dist-info/RECORD,,
File without changes