mdbq 3.5.2__py3-none-any.whl → 3.5.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -429,6 +429,130 @@ class MysqlDatasQuery:
429
429
  )
430
430
  return True
431
431
 
432
+ def _ald_wxt(self, db_name='聚合数据', table_name='奥莱店_主体报表', is_maximize=True):
433
+ start_date, end_date = self.months_data(num=self.months)
434
+ projection = {
435
+ '日期': 1,
436
+ '场景名字': 1,
437
+ '主体id': 1,
438
+ '花费': 1,
439
+ '展现量': 1,
440
+ '点击量': 1,
441
+ '总购物车数': 1,
442
+ '总成交笔数': 1,
443
+ '总成交金额': 1,
444
+ '自然流量曝光量': 1,
445
+ '直接成交笔数': 1,
446
+ '直接成交金额': 1,
447
+ '店铺名称': 1,
448
+ }
449
+ __res = []
450
+ for year in range(2024, datetime.datetime.today().year+1):
451
+ df = self.download.data_to_df(
452
+ db_name='推广数据_奥莱店',
453
+ table_name=f'主体报表_{year}',
454
+ start_date=start_date,
455
+ end_date=end_date,
456
+ projection=projection,
457
+ )
458
+ __res.append(df)
459
+ df = pd.concat(__res, ignore_index=True)
460
+ df.rename(columns={
461
+ '场景名字': '营销场景',
462
+ '主体id': '商品id',
463
+ '总购物车数': '加购量',
464
+ '总成交笔数': '成交笔数',
465
+ '总成交金额': '成交金额'
466
+ }, inplace=True)
467
+ df = df.astype({
468
+ '商品id': str,
469
+ '花费': 'float64',
470
+ '展现量': 'int64',
471
+ '点击量': 'int64',
472
+ '加购量': 'int64',
473
+ '成交笔数': 'int64',
474
+ '成交金额': 'float64',
475
+ '自然流量曝光量': 'int64',
476
+ '直接成交笔数': 'int64',
477
+ '直接成交金额': 'float64',
478
+ }, errors='raise')
479
+ df = df[df['花费'] > 0]
480
+ if is_maximize:
481
+ df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '点击量'], as_index=False).agg(
482
+ **{
483
+ '展现量': ('展现量', np.max),
484
+ '加购量': ('加购量', np.max),
485
+ '成交笔数': ('成交笔数', np.max),
486
+ '成交金额': ('成交金额', np.max),
487
+ '自然流量曝光量': ('自然流量曝光量', np.max),
488
+ '直接成交笔数': ('直接成交笔数', np.max),
489
+ '直接成交金额': ('直接成交金额', np.max)
490
+ }
491
+ )
492
+ else:
493
+ df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '点击量'], as_index=False).agg(
494
+ **{
495
+ '展现量': ('展现量', np.min),
496
+ '加购量': ('加购量', np.min),
497
+ '成交笔数': ('成交笔数', np.min),
498
+ '成交金额': ('成交金额', np.min),
499
+ '自然流量曝光量': ('自然流量曝光量', np.min),
500
+ '直接成交笔数': ('直接成交笔数', np.max),
501
+ '直接成交金额': ('直接成交金额', np.max)
502
+ }
503
+ )
504
+ df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
505
+ set_typ = {
506
+ '日期': 'date',
507
+ '推广渠道': 'varchar(100)',
508
+ '店铺名称': 'varchar(100)',
509
+ '营销场景': 'varchar(100)',
510
+ '商品id': 'bigint',
511
+ '花费': 'decimal(12,2)',
512
+ '展现量': 'int',
513
+ '点击量': 'int',
514
+ '加购量': 'int',
515
+ '成交笔数': 'int',
516
+ '成交金额': 'decimal(12,2)',
517
+ '自然流量曝光量': 'int',
518
+ '直接成交笔数': 'int',
519
+ '直接成交金额': 'decimal(12,2)',
520
+ }
521
+
522
+ if not self.update_service:
523
+ return
524
+ min_date = df['日期'].min()
525
+ max_date = df['日期'].max()
526
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
527
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
528
+ m_engine.df_to_mysql(
529
+ df=df,
530
+ db_name=db_name,
531
+ table_name=table_name,
532
+ # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
533
+ move_insert=True, # 先删除,再插入
534
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
535
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
536
+ count=None,
537
+ filename=None, # 用来追踪处理进度
538
+ reset_id=True, # 是否重置自增列
539
+ set_typ=set_typ,
540
+ )
541
+ company_engine.df_to_mysql(
542
+ df=df,
543
+ db_name=db_name,
544
+ table_name=table_name,
545
+ # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
546
+ move_insert=True, # 先删除,再插入
547
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
548
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
549
+ count=None,
550
+ filename=None, # 用来追踪处理进度
551
+ reset_id=True, # 是否重置自增列
552
+ set_typ=set_typ,
553
+ )
554
+ return True
555
+
432
556
  @try_except
433
557
  def syj(self, db_name='聚合数据', table_name='生意经_宝贝指标'):
434
558
  start_date, end_date = self.months_data(num=self.months)
@@ -3934,6 +4058,7 @@ def query1(months=1, less_dict=[]):
3934
4058
  sdq.months = months # 设置数据周期, 1 表示近 2 个月
3935
4059
  sdq.update_service = True # 调试时加,true: 将数据写入 mysql 服务器
3936
4060
 
4061
+ sdq._ald_wxt(db_name='聚合数据', table_name='奥莱店_主体报表')
3937
4062
  sdq._tb_wxt(db_name='聚合数据', table_name='淘宝_主体报表')
3938
4063
  sdq.tg_wxt(db_name='聚合数据', table_name='天猫_主体报表')
3939
4064
  sdq.syj(db_name='聚合数据', table_name='生意经_宝贝指标')
@@ -4054,13 +4179,5 @@ if __name__ == '__main__':
4054
4179
  # )
4055
4180
 
4056
4181
  sdq = MysqlDatasQuery() # 实例化数据处理类
4057
- sdq.months = 1
4058
- sdq.tg_by_day(db_name='聚合数据', table_name='多店推广场景_按日聚合')
4059
-
4060
- optimize_data.op_data(
4061
- db_name_lists=['聚合数据'],
4062
- days=70, # 清理聚合数据的日期长度
4063
- is_mongo=False,
4064
- is_mysql=True,
4065
- )
4066
-
4182
+ sdq.months = 3
4183
+ sdq._ald_wxt(db_name='聚合数据', table_name='奥莱店_主体报表')
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.5.2
3
+ Version: 3.5.4
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -4,7 +4,7 @@ mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,
4
4
  mdbq/aggregation/aggregation.py,sha256=-yzApnlqSN2L0E1YMu5ml-W827qpKQvWPCOI7jj2kzY,80264
5
5
  mdbq/aggregation/datashow.py,sha256=1AYSIDkdUx-4as1Ax2rPj0cExM9d-qFMrFYLAaPHNuk,54962
6
6
  mdbq/aggregation/optimize_data.py,sha256=RXIv7cACCgYyehAxMjUYi_S7rVyjIwXKWMaM3nduGtA,3068
7
- mdbq/aggregation/query_data.py,sha256=JI-W2l6Oy98jrTOcw3pZc7ARZI_oFkpCllVaGifGvrM,185763
7
+ mdbq/aggregation/query_data.py,sha256=Zsbt2LykpqRblIZhiSW1rgs41zygC8InefH0zpNIWp8,191284
8
8
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
9
9
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
10
10
  mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
@@ -34,7 +34,7 @@ mdbq/pbix/refresh_all.py,sha256=OBT9EewSZ0aRS9vL_FflVn74d4l2G00wzHiikCC4TC0,5926
34
34
  mdbq/pbix/refresh_all_old.py,sha256=_pq3WSQ728GPtEG5pfsZI2uTJhU8D6ra-htIk1JXYzw,7192
35
35
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
36
36
  mdbq/spider/aikucun.py,sha256=zOacjrJ3MvToyuugA68xB-oN6RKj8K3GxMKudnln9EA,22207
37
- mdbq-3.5.2.dist-info/METADATA,sha256=BDEiMQwfpIL-OqUPcVBFxr35oV4f-WBlpNwh7v17rgU,243
38
- mdbq-3.5.2.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
39
- mdbq-3.5.2.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
40
- mdbq-3.5.2.dist-info/RECORD,,
37
+ mdbq-3.5.4.dist-info/METADATA,sha256=XXmpl11Em8OPB9fEcHCVf6t1ePe1TcJ-Y6SY4buhwnw,243
38
+ mdbq-3.5.4.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
39
+ mdbq-3.5.4.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
40
+ mdbq-3.5.4.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.44.0)
2
+ Generator: setuptools (70.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5