mdbq 3.5.1__py3-none-any.whl → 3.5.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mdbq/aggregation/query_data.py
CHANGED
@@ -2525,6 +2525,7 @@ class MysqlDatasQuery:
|
|
2525
2525
|
"""
|
2526
2526
|
df_tm = pd.DataFrame() # 天猫营销场景
|
2527
2527
|
df_tb = pd.DataFrame() # 淘宝营销场景
|
2528
|
+
df_al = pd.DataFrame() # 奥莱营销场景
|
2528
2529
|
df_tb_qzt = pd.DataFrame() # 淘宝全站推广
|
2529
2530
|
df_tm_pxb = pd.DataFrame() # 天猫品销宝
|
2530
2531
|
df_tm_living = pd.DataFrame() # 天猫超级直播
|
@@ -2568,6 +2569,33 @@ class MysqlDatasQuery:
|
|
2568
2569
|
'成交金额': ('总成交金额', np.max)
|
2569
2570
|
}
|
2570
2571
|
)
|
2572
|
+
# 奥莱店
|
2573
|
+
__res = []
|
2574
|
+
for year in range(2024, datetime.datetime.today().year + 1):
|
2575
|
+
df_al = self.download.data_to_df(
|
2576
|
+
db_name='推广数据_奥莱店',
|
2577
|
+
table_name=f'营销场景报表_{year}',
|
2578
|
+
start_date=start_date,
|
2579
|
+
end_date=end_date,
|
2580
|
+
projection=projection,
|
2581
|
+
)
|
2582
|
+
__res.append(df_al)
|
2583
|
+
df_al = pd.concat(__res, ignore_index=True)
|
2584
|
+
if len(df_al) > 0:
|
2585
|
+
df_al.rename(columns={'场景名字': '营销场景'}, inplace=True)
|
2586
|
+
df_al['店铺名称'] = df_al['店铺名称'].apply(lambda x: '万里马箱包outlet店' if x == 'Wanlima万里马箱包outlet店' else x)
|
2587
|
+
df_al = df_al.groupby(
|
2588
|
+
['日期', '店铺名称', '场景id', '营销场景', '花费', '展现量'],
|
2589
|
+
as_index=False).agg(
|
2590
|
+
**{
|
2591
|
+
# '展现量': ('展现量', np.max),
|
2592
|
+
'点击量': ('点击量', np.max),
|
2593
|
+
'加购量': ('总购物车数', np.max),
|
2594
|
+
'成交笔数': ('总成交笔数', np.max),
|
2595
|
+
'成交金额': ('总成交金额', np.max)
|
2596
|
+
}
|
2597
|
+
)
|
2598
|
+
# 淘宝店
|
2571
2599
|
__res = []
|
2572
2600
|
for year in range(2024, datetime.datetime.today().year + 1):
|
2573
2601
|
df_tb = self.download.data_to_df(
|
@@ -2801,7 +2829,7 @@ class MysqlDatasQuery:
|
|
2801
2829
|
df_jd_qzyx = df_jd_qzyx[['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量', '成交笔数', '成交金额']]
|
2802
2830
|
df_jd_qzyx = df_jd_qzyx[df_jd_qzyx['花费'] > 0]
|
2803
2831
|
|
2804
|
-
_datas = [item for item in [df_tm, df_tb, df_tb_qzt, df_tm_pxb, df_tm_living, df_jd, df_jd_qzyx] if len(item) > 0] # 阻止空的 dataframe
|
2832
|
+
_datas = [item for item in [df_tm, df_tb, df_tb_qzt, df_al, df_tm_pxb, df_tm_living, df_jd, df_jd_qzyx] if len(item) > 0] # 阻止空的 dataframe
|
2805
2833
|
df = pd.concat(_datas, axis=0, ignore_index=True)
|
2806
2834
|
df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore') # 转换日期列
|
2807
2835
|
df = df.groupby(
|
@@ -4020,21 +4048,19 @@ def main(days=150, months=3):
|
|
4020
4048
|
|
4021
4049
|
|
4022
4050
|
if __name__ == '__main__':
|
4023
|
-
main(
|
4024
|
-
|
4025
|
-
|
4026
|
-
)
|
4051
|
+
# main(
|
4052
|
+
# days=150, # 清理聚合数据的日期长度
|
4053
|
+
# months=3 # 生成聚合数据的长度
|
4054
|
+
# )
|
4027
4055
|
|
4028
|
-
|
4029
|
-
|
4030
|
-
|
4031
|
-
|
4032
|
-
|
4033
|
-
|
4034
|
-
|
4035
|
-
|
4036
|
-
|
4037
|
-
|
4038
|
-
# ),
|
4039
|
-
# }
|
4056
|
+
sdq = MysqlDatasQuery() # 实例化数据处理类
|
4057
|
+
sdq.months = 1
|
4058
|
+
sdq.tg_by_day(db_name='聚合数据', table_name='多店推广场景_按日聚合')
|
4059
|
+
|
4060
|
+
optimize_data.op_data(
|
4061
|
+
db_name_lists=['聚合数据'],
|
4062
|
+
days=70, # 清理聚合数据的日期长度
|
4063
|
+
is_mongo=False,
|
4064
|
+
is_mysql=True,
|
4065
|
+
)
|
4040
4066
|
|
@@ -4,7 +4,7 @@ mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,
|
|
4
4
|
mdbq/aggregation/aggregation.py,sha256=-yzApnlqSN2L0E1YMu5ml-W827qpKQvWPCOI7jj2kzY,80264
|
5
5
|
mdbq/aggregation/datashow.py,sha256=1AYSIDkdUx-4as1Ax2rPj0cExM9d-qFMrFYLAaPHNuk,54962
|
6
6
|
mdbq/aggregation/optimize_data.py,sha256=RXIv7cACCgYyehAxMjUYi_S7rVyjIwXKWMaM3nduGtA,3068
|
7
|
-
mdbq/aggregation/query_data.py,sha256=
|
7
|
+
mdbq/aggregation/query_data.py,sha256=JI-W2l6Oy98jrTOcw3pZc7ARZI_oFkpCllVaGifGvrM,185763
|
8
8
|
mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
|
9
9
|
mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
|
10
10
|
mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
|
@@ -34,7 +34,7 @@ mdbq/pbix/refresh_all.py,sha256=OBT9EewSZ0aRS9vL_FflVn74d4l2G00wzHiikCC4TC0,5926
|
|
34
34
|
mdbq/pbix/refresh_all_old.py,sha256=_pq3WSQ728GPtEG5pfsZI2uTJhU8D6ra-htIk1JXYzw,7192
|
35
35
|
mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
|
36
36
|
mdbq/spider/aikucun.py,sha256=zOacjrJ3MvToyuugA68xB-oN6RKj8K3GxMKudnln9EA,22207
|
37
|
-
mdbq-3.5.
|
38
|
-
mdbq-3.5.
|
39
|
-
mdbq-3.5.
|
40
|
-
mdbq-3.5.
|
37
|
+
mdbq-3.5.2.dist-info/METADATA,sha256=BDEiMQwfpIL-OqUPcVBFxr35oV4f-WBlpNwh7v17rgU,243
|
38
|
+
mdbq-3.5.2.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
39
|
+
mdbq-3.5.2.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
|
40
|
+
mdbq-3.5.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|