mdbq 3.5.1__py3-none-any.whl → 3.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2525,6 +2525,7 @@ class MysqlDatasQuery:
2525
2525
  """
2526
2526
  df_tm = pd.DataFrame() # 天猫营销场景
2527
2527
  df_tb = pd.DataFrame() # 淘宝营销场景
2528
+ df_al = pd.DataFrame() # 奥莱营销场景
2528
2529
  df_tb_qzt = pd.DataFrame() # 淘宝全站推广
2529
2530
  df_tm_pxb = pd.DataFrame() # 天猫品销宝
2530
2531
  df_tm_living = pd.DataFrame() # 天猫超级直播
@@ -2568,6 +2569,33 @@ class MysqlDatasQuery:
2568
2569
  '成交金额': ('总成交金额', np.max)
2569
2570
  }
2570
2571
  )
2572
+ # 奥莱店
2573
+ __res = []
2574
+ for year in range(2024, datetime.datetime.today().year + 1):
2575
+ df_al = self.download.data_to_df(
2576
+ db_name='推广数据_奥莱店',
2577
+ table_name=f'营销场景报表_{year}',
2578
+ start_date=start_date,
2579
+ end_date=end_date,
2580
+ projection=projection,
2581
+ )
2582
+ __res.append(df_al)
2583
+ df_al = pd.concat(__res, ignore_index=True)
2584
+ if len(df_al) > 0:
2585
+ df_al.rename(columns={'场景名字': '营销场景'}, inplace=True)
2586
+ df_al['店铺名称'] = df_al['店铺名称'].apply(lambda x: '万里马箱包outlet店' if x == 'Wanlima万里马箱包outlet店' else x)
2587
+ df_al = df_al.groupby(
2588
+ ['日期', '店铺名称', '场景id', '营销场景', '花费', '展现量'],
2589
+ as_index=False).agg(
2590
+ **{
2591
+ # '展现量': ('展现量', np.max),
2592
+ '点击量': ('点击量', np.max),
2593
+ '加购量': ('总购物车数', np.max),
2594
+ '成交笔数': ('总成交笔数', np.max),
2595
+ '成交金额': ('总成交金额', np.max)
2596
+ }
2597
+ )
2598
+ # 淘宝店
2571
2599
  __res = []
2572
2600
  for year in range(2024, datetime.datetime.today().year + 1):
2573
2601
  df_tb = self.download.data_to_df(
@@ -2801,7 +2829,7 @@ class MysqlDatasQuery:
2801
2829
  df_jd_qzyx = df_jd_qzyx[['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量', '成交笔数', '成交金额']]
2802
2830
  df_jd_qzyx = df_jd_qzyx[df_jd_qzyx['花费'] > 0]
2803
2831
 
2804
- _datas = [item for item in [df_tm, df_tb, df_tb_qzt, df_tm_pxb, df_tm_living, df_jd, df_jd_qzyx] if len(item) > 0] # 阻止空的 dataframe
2832
+ _datas = [item for item in [df_tm, df_tb, df_tb_qzt, df_al, df_tm_pxb, df_tm_living, df_jd, df_jd_qzyx] if len(item) > 0] # 阻止空的 dataframe
2805
2833
  df = pd.concat(_datas, axis=0, ignore_index=True)
2806
2834
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore') # 转换日期列
2807
2835
  df = df.groupby(
@@ -4020,21 +4048,19 @@ def main(days=150, months=3):
4020
4048
 
4021
4049
 
4022
4050
  if __name__ == '__main__':
4023
- main(
4024
- days=3, # 清理聚合数据的日期长度
4025
- months=1 # 生成聚合数据的长度
4026
- )
4051
+ # main(
4052
+ # days=150, # 清理聚合数据的日期长度
4053
+ # months=3 # 生成聚合数据的长度
4054
+ # )
4027
4055
 
4028
- # query_list = [query1, query2, query3]
4029
- # # 使用 ThreadPoolExecutor 来并行运行
4030
- # # with concurrent.futures.ThreadPoolExecutor() as executor:
4031
- # with concurrent.futures.ProcessPoolExecutor() as executor:
4032
- # for func_query in query_list:
4033
- # future_to_function = {
4034
- # executor.submit(
4035
- # func_query,
4036
- # months=1,
4037
- # less_dict=[],
4038
- # ),
4039
- # }
4056
+ sdq = MysqlDatasQuery() # 实例化数据处理类
4057
+ sdq.months = 1
4058
+ sdq.tg_by_day(db_name='聚合数据', table_name='多店推广场景_按日聚合')
4059
+
4060
+ optimize_data.op_data(
4061
+ db_name_lists=['聚合数据'],
4062
+ days=70, # 清理聚合数据的日期长度
4063
+ is_mongo=False,
4064
+ is_mysql=True,
4065
+ )
4040
4066
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.5.1
3
+ Version: 3.5.2
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -4,7 +4,7 @@ mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,
4
4
  mdbq/aggregation/aggregation.py,sha256=-yzApnlqSN2L0E1YMu5ml-W827qpKQvWPCOI7jj2kzY,80264
5
5
  mdbq/aggregation/datashow.py,sha256=1AYSIDkdUx-4as1Ax2rPj0cExM9d-qFMrFYLAaPHNuk,54962
6
6
  mdbq/aggregation/optimize_data.py,sha256=RXIv7cACCgYyehAxMjUYi_S7rVyjIwXKWMaM3nduGtA,3068
7
- mdbq/aggregation/query_data.py,sha256=21rrtUZzoCXlvoVCAAy70MO19Iu3l5cLvX_f6KTdshw,184530
7
+ mdbq/aggregation/query_data.py,sha256=JI-W2l6Oy98jrTOcw3pZc7ARZI_oFkpCllVaGifGvrM,185763
8
8
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
9
9
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
10
10
  mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
@@ -34,7 +34,7 @@ mdbq/pbix/refresh_all.py,sha256=OBT9EewSZ0aRS9vL_FflVn74d4l2G00wzHiikCC4TC0,5926
34
34
  mdbq/pbix/refresh_all_old.py,sha256=_pq3WSQ728GPtEG5pfsZI2uTJhU8D6ra-htIk1JXYzw,7192
35
35
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
36
36
  mdbq/spider/aikucun.py,sha256=zOacjrJ3MvToyuugA68xB-oN6RKj8K3GxMKudnln9EA,22207
37
- mdbq-3.5.1.dist-info/METADATA,sha256=ZXZpAXwq4LS90LN9dqJF28UDs3iA4T70Ij9DYQYgcj4,243
38
- mdbq-3.5.1.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
39
- mdbq-3.5.1.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
40
- mdbq-3.5.1.dist-info/RECORD,,
37
+ mdbq-3.5.2.dist-info/METADATA,sha256=BDEiMQwfpIL-OqUPcVBFxr35oV4f-WBlpNwh7v17rgU,243
38
+ mdbq-3.5.2.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
39
+ mdbq-3.5.2.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
40
+ mdbq-3.5.2.dist-info/RECORD,,
File without changes