mdbq 3.4.3__py3-none-any.whl → 3.4.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,20 +4,36 @@ import os
4
4
  import re
5
5
  import socket
6
6
  import platform
7
+ import getpass
7
8
  import datetime
8
9
  import time
9
10
  from mdbq.config import myconfig
10
11
  from mdbq.mysql import mysql
11
12
  from mdbq.mysql import s_query
13
+ from mdbq.other import ua_sj
12
14
  import pandas as pd
13
15
  import numpy as np
14
16
  import plotly.express as px
15
17
  import plotly.graph_objects as go
16
18
  from plotly.subplots import make_subplots
17
19
  import tkinter as tk
20
+ import requests
21
+ from io import BytesIO
22
+ from PIL import Image
23
+ import base64
24
+ import matplotlib.pyplot as plt
18
25
 
19
26
  from sqlalchemy.sql.functions import count
20
27
 
28
+ if platform.system() == 'Windows':
29
+ D_PATH = os.path.join(f'C:\\Users\\{getpass.getuser()}\\Downloads')
30
+ elif platform.system() == 'Linux':
31
+ D_PATH = 'Downloads'
32
+ if not os.path.exists(D_PATH):
33
+ os.makedirs(D_PATH)
34
+ else:
35
+ D_PATH = os.path.join(f'/Users/{getpass.getuser()}/Downloads')
36
+
21
37
  m_engine = mysql.MysqlUpload(username='', password='', host='', port=0, charset='utf8mb4')
22
38
  company_engine = mysql.MysqlUpload(username='', password='', host='', port=0, charset='utf8mb4')
23
39
 
@@ -92,7 +108,7 @@ else:
92
108
 
93
109
  class DataShow:
94
110
  def __init__(self):
95
- self.path = '/Users/xigua/Downloads/html文件'
111
+ self.path = os.path.join(D_PATH, 'http_server')
96
112
  if not os.path.isdir(self.path):
97
113
  os.makedirs(self.path)
98
114
  root = tk.Tk()
@@ -105,8 +121,10 @@ class DataShow:
105
121
 
106
122
  def getdata(self, db_name, table_name, pro_list, start_date=None, end_date=None):
107
123
  download = s_query.QueryDatas(username=username, password=password, host=host, port=port)
108
- if not start_date or not end_date:
109
- start_date, end_date = '2000-01-01', '2099-12-31' # 从数据库提取数据,不能是 self.start_date
124
+ if not start_date:
125
+ start_date = '2000-01-01' # 从数据库提取数据,不能是 self.start_date
126
+ if not end_date:
127
+ end_date = self.today.strftime('%Y-%m-%d')
110
128
  projection = {}
111
129
  [projection.update({k: 1}) for k in pro_list]
112
130
  __res = []
@@ -722,7 +740,7 @@ class DataShow:
722
740
  align="left", # 文本对齐方式
723
741
  font=dict(size=12),
724
742
  )
725
- fig.write_html(os.path.join(self.path, f'{filename}_{item_id}.html'))
743
+ fig.write_html(os.path.join(self.path, f'{filename}.html'))
726
744
 
727
745
  def crowd(self, db_name='人群画像2', table_list=None, pro_list=None, filename='达摩盘人群画像', crowd_id=None, last_date=None):
728
746
  # item_ids = [696017020186, 714066010148, 830890472575]
@@ -861,43 +879,368 @@ class DataShow:
861
879
  align="left", # 文本对齐方式
862
880
  font=dict(size=12),
863
881
  )
864
- fig.write_html(os.path.join(self.path, f'{filename}_{crowd_name[:15]}.html'))
882
+ fig.write_html(os.path.join(self.path, f'{filename}.html'))
883
+
884
+ def item_show(self, db_name='聚合数据', table_list=None, pro_list=None, filename='商品数据', start_date=None, end_date=None):
885
+ if not pro_list:
886
+ pro_list = ['日期', '店铺名称', '营销场景', '商品id', '花费', '点击量', '加购量', '成交笔数', '成交金额']
887
+ table_name = '天猫_主体报表'
888
+ df = self.getdata(
889
+ db_name=db_name,
890
+ table_name=table_name,
891
+ pro_list=pro_list,
892
+ start_date=start_date,
893
+ end_date=end_date
894
+ )
895
+ df_set = self.getdata(
896
+ db_name='属性设置3',
897
+ table_name='商品sku属性',
898
+ pro_list=['商品id', '白底图'],
899
+ start_date='2020-01-01',
900
+ end_date=end_date
901
+ )
902
+ df_set = df_set[df_set['白底图'] != '0']
903
+ df_set.drop_duplicates(subset='商品id', keep='last', inplace=True, ignore_index=True)
904
+
905
+ if len(df) == 0:
906
+ print(f'数据不能为空: {table_name}')
907
+ return
908
+ df['日期'] = pd.to_datetime(df['日期'])
909
+ min_date = df['日期'].min().strftime('%Y-%m-%d')
910
+ max_date = df['日期'].max().strftime('%Y-%m-%d')
911
+
912
+ df = df.groupby(['店铺名称', '商品id'], as_index=False).agg(
913
+ **{
914
+ '花费': ('花费', np.sum),
915
+ '点击量': ('点击量', np.sum),
916
+ '加购量': ('加购量', np.sum),
917
+ '成交笔数': ('成交笔数', np.sum),
918
+ '成交金额': ('成交金额', np.sum),
919
+ })
920
+ cost_sum = df['花费'].sum()
921
+ df['花费占比'] = df.apply(lambda x: f'{round(x['花费']/cost_sum * 100, 1)}%', axis=1)
922
+ df['roi投产'] = df.apply(lambda x: f'{round(x['成交金额'] / x['花费'], 2)}' if x['花费'] > 0 else 0, axis=1)
923
+ df = pd.merge(df, df_set, left_on='商品id', right_on='商品id', how='left')
924
+ df.sort_values(['花费'], ascending=[False], ignore_index=True, inplace=True)
925
+ df = df.head(100)
926
+ df.reset_index(inplace=True)
927
+ df['index'] = df['index'] + 1
928
+ df.rename(columns={'index': '序号'}, inplace=True)
929
+
930
+ # 创建临时目录来存储图片
931
+ temp_dir = os.path.join(self.path, 'temp_images')
932
+ os.makedirs(temp_dir, exist_ok=True)
933
+
934
+ df_new = df.copy()
935
+ df_new = df_new.head(10)
936
+ pic_title1 = '商品花费占比'
937
+ img_file1 = os.path.join(temp_dir, f'{pic_title1}.png')
938
+ if not os.path.isfile(img_file1):
939
+ font_properties = {
940
+ 'family': 'PingFang HK', # 字体类型 PingFang HK, Hiragino Sans GB, Arial Unicode MS
941
+ 'size': 12, # 字体大小
942
+ 'weight': 'light', # 字体粗细('light', 'normal', 'medium', 'semibold', 'bold', 'heavy', 'black')
943
+ 'style': 'italic' # 字体样式('normal', 'italic', 'oblique')
944
+ }
945
+ fig, ax = plt.subplots()
946
+ ax.pie(df_new['花费'], labels=df_new['商品id'], autopct='%1.1f%%', startangle=140)
947
+ ax.set_title(pic_title1, fontdict=font_properties) # 设置饼图的标题
948
+ ax.axis('equal') # 确保饼图是圆形的
949
+ plt.savefig(img_file1) # 保存饼图为PNG文件
950
+ plt.close()
951
+
952
+ # # 下载图片并保存到临时目录
953
+ # for i, url in enumerate(df['白底图']):
954
+ # item_id = df['商品id'].tolist()[i]
955
+ # img_path = os.path.join(temp_dir, f'image_{item_id}.jpg')
956
+ # if os.path.isfile(img_path):
957
+ # df.at[i, '白底图'] = img_path
958
+ # continue
959
+ # response = requests.get(url, headers={'User-Agent': ua_sj.get_ua()})
960
+ # if response.status_code == 200:
961
+ # with open(img_path, 'wb') as f:
962
+ # f.write(response.content)
963
+ # # 更新 DataFrame 中的图片地址列为本地路径
964
+ # df.at[i, '白底图'] = img_path
965
+ # else:
966
+ # print(f"Failed to download image at URL: {url}")
967
+
968
+ # 转换图片列
969
+ def convert_image_to_html(image_url_or_base64):
970
+ if os.path.isfile(image_url_or_base64):
971
+ # image_url_or_base64 是本地图片, 将图片路径转换为 Base64 编码的 <img> 标签
972
+ with open(image_url_or_base64, "rb") as image_file:
973
+ encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
974
+ img_tag = (f'<img class="img" src="data:image/jpeg;base64,{encoded_string}" alt="Image">')
975
+ return img_tag
976
+ else:
977
+ # image_url_or_base64 是在线 url 或者 Base64编码的图片
978
+ return f'<img class="img" src="{image_url_or_base64}" alt="Image">'
979
+
980
+ # 应用这个函数到图片列
981
+ df['Image_HTML'] = df['白底图'].apply(convert_image_to_html)
982
+
983
+ local_file1 = os.path.join(self.path, '多店推广场景.html')
984
+ local_file2 = os.path.join(self.path, '多店推广场景.html')
985
+ local_file3 = os.path.join(self.path, '多店推广场景.html')
986
+ local_file4 = os.path.join(self.path, '多店推广场景.html')
987
+ local_file5 = os.path.join(self.path, '多店推广场景.html')
988
+
989
+ # 创建 HTML
990
+ html_template = """
991
+ <head>
992
+ <meta charset="UTF-8">
993
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
994
+ <title>商品推广数据</title>
995
+ <style>
996
+ .centered-table {
997
+ margin-top: 20px;
998
+ margin-down: 100px;
999
+ margin-left: auto;
1000
+ margin-right: auto;
1001
+ border-collapse: collapse; /* 可选,用于合并表格边框 */
1002
+ width: 60%; /* 设置表格宽度为父容器宽度的50%,或者你可以使用固定宽度 */
1003
+ }
1004
+ thead th {
1005
+ background-color: #f2f2f2; /* 设置表头背景颜色 */
1006
+ font-size: 16px; /* 增大表头字体 */
1007
+ font-weight: bold; /* 加粗表头字体 */
1008
+ text-align: center; /* 设置表头文本居中 */
1009
+ }
1010
+ caption {
1011
+ caption-side: top; /* 标题显示在表格上方 */
1012
+ font-size: 24px; /* 设置标题字体大小 */
1013
+ font-weight: bold; /* 设置标题字体加粗 */
1014
+ text-align: center; /* 设置标题文本居中 */
1015
+ margin-bottom: 20px; /* 为标题和表格之间添加间距 */
1016
+ }
1017
+ td, th {
1018
+ border: 1px solid #ddd; /* 单元格边框 */
1019
+ line-height: 1em; /* 设置行高为2倍的当前字体大小 */
1020
+ padding: 5 5px; /* 设置左右边距,内边距增加单元格的整体高度 */
1021
+ text-align: center; /* 设置文本对齐方式 */
1022
+ }
1023
+ img {
1024
+ width: 80px; /* 设置图片宽度 */
1025
+ height: auto; /* 高度自动调整以保持宽高比 */
1026
+ /* 如果需要垂直居中且图片是块级元素,则可以使用以下样式(但通常不是必需的,因为图片默认是内联元素)
1027
+ text-align: center; /* 水平居中(适用于内联或块级子元素) */
1028
+ display: block;
1029
+ margin: 0 auto; */
1030
+ }
1031
+ button {
1032
+ border: none;
1033
+ padding: 8px 12px;
1034
+ font-size: 14px;
1035
+ cursor: pointer;
1036
+ }
1037
+ .centered-text {
1038
+ position: fixed; /* 固定定位 */
1039
+ bottom: 15px; /* 距离页面顶部10px(可根据需要调整) */
1040
+ right: calc(25vw - 420px); /* 距离页面右侧1/4宽度减去文本自身的宽度和可能的边距(这里假设文本宽度和边距共10px,实际情况需根据文本样式调整) */
1041
+ /* 如果文本宽度未知或可变,可以只使用25vw并接受可能的溢出 */
1042
+ /* right: 25vw; */ /* 直接使用25vw定位,不考虑文本宽度 */
1043
+ padding: 3px 10px; /* 可选的文本内边距 */
1044
+ background-color: rgba(255, 255, 255, 0.8); /* 可选的背景色和透明度 */
1045
+ box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* 可选的阴影效果 */
1046
+ }
1047
+
1048
+ .image-container {
1049
+ position: absolute; /* 使用绝对定位 */
1050
+ width: 15%; /* 设置图片宽度 */
1051
+ left: 10px; /* 距离页面左侧20px */
1052
+ top: 50%; /* 距离页面顶部50% */
1053
+ transform: translateY(-50%); /* 向上移动自身高度的一半,以实现垂直居中 */
1054
+ }
1055
+ .image-container img {
1056
+ width: 20%; /* 设置图片宽度 */
1057
+ height: auto; /* 高度自动调整以保持宽高比 */
1058
+ /* 如果需要垂直居中且图片是块级元素,则可以使用以下样式(但通常不是必需的,因为图片默认是内联元素)*/
1059
+ display: flex;
1060
+ flex-direction: column;
1061
+ align-items: flex-start;
1062
+ }
1063
+ .button1 {
1064
+ border: none;
1065
+ padding: 8px 12px;
1066
+ font-size: 14px;
1067
+ cursor: pointer;
1068
+ position: absolute; /* 使用绝对定位 */
1069
+ left: 5%; /* 距离页面左侧20px */
1070
+ top: 10%; /* 距离页面顶部50% */
1071
+ }
1072
+ .button2 {
1073
+ border: none;
1074
+ padding: 8px 12px;
1075
+ font-size: 14px;
1076
+ cursor: pointer;
1077
+ position: absolute; /* 使用绝对定位 */
1078
+ left: 5%; /* 距离页面左侧20px */
1079
+ top: 17%; /* 距离页面顶部50% */
1080
+ }
1081
+ .button3 {
1082
+ border: none;
1083
+ padding: 8px 12px;
1084
+ font-size: 14px;
1085
+ cursor: pointer;
1086
+ position: absolute; /* 使用绝对定位 */
1087
+ left: 5%; /* 距离页面左侧20px */
1088
+ top: 24%; /* 距离页面顶部50% */
1089
+ }
1090
+ .button4 {
1091
+ border: none;
1092
+ padding: 8px 12px;
1093
+ font-size: 14px;
1094
+ cursor: pointer;
1095
+ position: absolute; /* 使用绝对定位 */
1096
+ left: 5%; /* 距离页面左侧20px */
1097
+ top: 31%; /* 距离页面顶部50% */
1098
+ }
1099
+ .button5 {
1100
+ border: none;
1101
+ padding: 8px 12px;
1102
+ font-size: 14px;
1103
+ cursor: pointer;
1104
+ position: absolute; /* 使用绝对定位 */
1105
+ left: 5%; /* 距离页面左侧20px */
1106
+ top: 38%; /* 距离页面顶部50% */
1107
+ }
1108
+
1109
+ </style>
1110
+ </head>
1111
+
1112
+ <div class="div-button">
1113
+ <!-- 创建一个按钮 -->
1114
+ <button id="button1" class="button1">多店推广场景</button>
1115
+ <button id="button2" class="button2">店铺流量来源</button>
1116
+ <button id="button3" class="button3">达摩盘人群画像</button>
1117
+ <button id="button4" class="button4">商品人群画像</button>
1118
+ <button id="button5" class="button5">销售地域分布</button>
1119
+ </div>
1120
+ <script>
1121
+ // 获取按钮元素
1122
+ var tg = document.getElementById('button1');
1123
+ var dpll = document.getElementById('button2');
1124
+ var dmp1 = document.getElementById('button3');
1125
+ var dmp2 = document.getElementById('button4');
1126
+ var syj = document.getElementById('button5');
1127
+ tg.addEventListener('click', function() {
1128
+ window.open('{local_file1}', '_blank');
1129
+ });
1130
+ dpll.addEventListener('click', function() {
1131
+ window.open('{local_file2}', '_blank');
1132
+ });
1133
+ dmp1.addEventListener('click', function() {
1134
+ window.open('{local_file3}', '_blank');
1135
+ });
1136
+ dmp2.addEventListener('click', function() {
1137
+ window.open('{local_file4}', '_blank');
1138
+ });
1139
+ syj.addEventListener('click', function() {
1140
+ window.open('{local_file5}', '_blank');
1141
+ });
1142
+ </script>
1143
+
1144
+ <p class="centered-text">统计周期</p>
1145
+ <!--
1146
+ <img class="image-container" src="{img_file1}" alt="图片">
1147
+ -->
1148
+ <table class="centered-table">
1149
+ <thead>
1150
+ <caption>天猫商品推广数据</caption>
1151
+ <div>
1152
+ <tr>
1153
+ <th>序号</th>
1154
+ <th>商品</th>
1155
+ <th>店铺名称</th>
1156
+ <th>商品id</th>
1157
+ <th>花费</th>
1158
+ <th>花费占比</th>
1159
+ <th>点击量</th>
1160
+ <th>加购量</th>
1161
+ <th>成交笔数</th>
1162
+ <th>成交金额</th>
1163
+ <th>roi投产</th>
1164
+ </tr>
1165
+ </div>
1166
+ </thead>
1167
+ <tbody>
1168
+ {rows}
1169
+ </tbody>
1170
+ </table>
1171
+ """
1172
+ rows = []
1173
+ for _, row in df.iterrows():
1174
+ row_html = (f'<tr>'
1175
+ f'<td>{row["序号"]}</td>'
1176
+ f'<td>{row["Image_HTML"]}</td>'
1177
+ f'<td>{row["店铺名称"]}</td>'
1178
+ f'<td>{row["商品id"]}</td>'
1179
+ f'<td>{row["花费"]}</td>'
1180
+ f'<td>{row["花费占比"]}</td>'
1181
+ f'<td>{row["点击量"]}</td>'
1182
+ f'<td>{row["加购量"]}</td>'
1183
+ f'<td>{row["成交笔数"]}</td>'
1184
+ f'<td>{row["成交金额"]}</td>'
1185
+ f'<td>{row["roi投产"]}</td>'
1186
+ f'</tr>'
1187
+ )
1188
+ rows.append(row_html)
1189
+
1190
+ final_html = html_template.replace('{rows}', ''.join(rows))
1191
+ final_html = final_html.replace('统计周期', f'统计周期: {min_date} ~ {max_date}')
1192
+ final_html = final_html.replace('{local_file1}', local_file1)
1193
+ final_html = final_html.replace('{local_file2}', local_file2)
1194
+ final_html = final_html.replace('{local_file3}', local_file3)
1195
+ final_html = final_html.replace('{local_file4}', local_file4)
1196
+ final_html = final_html.replace('{local_file5}', local_file5)
1197
+ file = os.path.join(self.path, f'{filename}.html')
1198
+ with open(file, 'w') as f:
1199
+ f.write(final_html)
865
1200
 
866
1201
 
867
1202
  def main():
868
1203
  ds = DataShow()
869
1204
 
870
- # # 店铺流量来源
871
- # ds.dpll()
872
- # # 多店聚合推广数据
873
- # ds.tg(
874
- # days=15,
875
- # # start_date='2024-11-01',
876
- # # end_date='2024-11-30',
877
- # )
878
- #
879
- # # 商品人群画像
880
- # item_id_list = [
881
- # 839148235697,
882
- # ]
883
- # for item_id in item_id_list:
884
- # ds.item_crowd(
885
- # item_id=item_id,
886
- # lab='全部渠道',
887
- # option='商详浏览',
888
- # last_date=None,
889
- # d_str='近30天',
890
- # )
891
-
892
- # # 达摩盘人群画像
893
- # crowid_list = [
894
- # 40457166,
895
- # ]
896
- # for crowid in crowid_list:
897
- # ds.crowd(
898
- # crowd_id=crowid,
899
- # last_date=None,
900
- # )
1205
+ ds.item_show(
1206
+ db_name='聚合数据',
1207
+ table_list=None,
1208
+ pro_list=None,
1209
+ filename='天猫商品推广数据',
1210
+ start_date='2024-12-01',
1211
+ end_date=None,
1212
+ )
1213
+ # 店铺流量来源
1214
+ ds.dpll()
1215
+ # 多店聚合推广数据
1216
+ ds.tg(
1217
+ days=15,
1218
+ # start_date='2024-11-01',
1219
+ # end_date='2024-11-30',
1220
+ )
1221
+
1222
+ # 商品人群画像
1223
+ item_id_list = [
1224
+ 839148235697,
1225
+ ]
1226
+ for item_id in item_id_list:
1227
+ ds.item_crowd(
1228
+ item_id=item_id,
1229
+ lab='全部渠道',
1230
+ option='商详浏览',
1231
+ last_date=None,
1232
+ d_str='近30天',
1233
+ )
1234
+
1235
+ # 达摩盘人群画像
1236
+ crowid_list = [
1237
+ 40457166,
1238
+ ]
1239
+ for crowid in crowid_list:
1240
+ ds.crowd(
1241
+ crowd_id=crowid,
1242
+ last_date=None,
1243
+ )
901
1244
 
902
1245
  ds.pov_city(
903
1246
  db_name='生意经3',
@@ -907,5 +1250,6 @@ def main():
907
1250
  percent=0.015,
908
1251
  )
909
1252
 
1253
+
910
1254
  if __name__ == '__main__':
911
1255
  main()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.4.3
3
+ Version: 3.4.4
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -2,7 +2,7 @@ mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
2
2
  mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
3
3
  mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
4
4
  mdbq/aggregation/aggregation.py,sha256=-yzApnlqSN2L0E1YMu5ml-W827qpKQvWPCOI7jj2kzY,80264
5
- mdbq/aggregation/datashow.py,sha256=_pyv7ZmKpBp04bdE_N_RTtNbyBXHcOA-TAQ1vFxl8p8,37881
5
+ mdbq/aggregation/datashow.py,sha256=XTIhjlbC8MUDAq1XnWXco-IfL31FJO0Kgw9z3QoM2Jc,53219
6
6
  mdbq/aggregation/optimize_data.py,sha256=RXIv7cACCgYyehAxMjUYi_S7rVyjIwXKWMaM3nduGtA,3068
7
7
  mdbq/aggregation/query_data.py,sha256=9NALeHTP9tblOEPyntLBRtdroLG_qN9qWi34Hg4rXFM,178891
8
8
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
@@ -34,7 +34,7 @@ mdbq/pbix/refresh_all.py,sha256=OBT9EewSZ0aRS9vL_FflVn74d4l2G00wzHiikCC4TC0,5926
34
34
  mdbq/pbix/refresh_all_old.py,sha256=_pq3WSQ728GPtEG5pfsZI2uTJhU8D6ra-htIk1JXYzw,7192
35
35
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
36
36
  mdbq/spider/aikucun.py,sha256=v7VO5gtEXR6_4Q6ujbTyu1FHu7TXHcwSQ6hIO249YH0,22208
37
- mdbq-3.4.3.dist-info/METADATA,sha256=O8d3FiyMrxJoF1-_OcK-YsIQ01m3hQaGxvn8Pk2UoYY,243
38
- mdbq-3.4.3.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
39
- mdbq-3.4.3.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
40
- mdbq-3.4.3.dist-info/RECORD,,
37
+ mdbq-3.4.4.dist-info/METADATA,sha256=owU691dFqOy3Rv_GlFjck7sWdx5R8ZeFZkfkWtpJBcE,243
38
+ mdbq-3.4.4.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
39
+ mdbq-3.4.4.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
40
+ mdbq-3.4.4.dist-info/RECORD,,
File without changes