mdbq 3.4.1__py3-none-any.whl → 3.4.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,5 @@
1
1
  # -*- coding: UTF-8 –*-
2
+ import decimal
2
3
  import os
3
4
  import re
4
5
  import socket
@@ -121,14 +122,14 @@ class DataShow:
121
122
  df = pd.concat(__res, ignore_index=True)
122
123
  return df
123
124
 
124
- def pov_city(self, db_name='生意经3', filename='销售地域分布', start_date=None, end_date=None, percentage=None):
125
+ def pov_city(self, db_name='生意经3', filename='销售地域分布', start_date=None, end_date=None, percent=None):
125
126
  """
126
127
  生意经 省份城市销售分析
127
128
  """
128
129
  if not start_date:
129
130
  start_date = self.start_date
130
131
  if not end_date:
131
- end_date = self.end_date
132
+ end_date = self.today.strftime('%Y-%m-%d')
132
133
  pov_set = self.getdata(
133
134
  db_name='属性设置3',
134
135
  table_name=f'城市等级',
@@ -152,21 +153,6 @@ class DataShow:
152
153
  **{'销售额': ('销售额', np.sum), '退款额': ('退款额', np.sum)})
153
154
  df_city = df_city[df_city['销售额'] > 0]
154
155
 
155
- # 将城市等级添加到df
156
- pov_set = pov_set[['城市等级', '城市']]
157
- pov_set.drop_duplicates(subset='城市', keep='last', inplace=True, ignore_index=True)
158
- df_city = pd.merge(df_city, pov_set, left_on=['城市'], right_on=['城市'], how='left')
159
- df_level = df_city.groupby(['店铺名称', '城市等级'], as_index=False).agg(
160
- **{'销售额': ('销售额', np.sum), '退款额': ('退款额', np.sum)})
161
- data_list = [('销售 按城市等级', df_level['城市等级'].tolist(), df_level['销售额'].tolist())]
162
- if percentage:
163
- print(df_city['销售额'].sum())
164
- return
165
- df_city1 = df_city[df_city['销售额'] > int(percentage)]
166
- data_list += ('销售额top城市', df_city1['城市'].tolist(), df_city1['销售额'].tolist())
167
- df_city2 = df_city[df_city['退款额'] > int(percentage)]
168
- data_list += ('退款额top城市', df_city2['城市'].tolist(), df_city2['退款额'].tolist())
169
-
170
156
  # 省份
171
157
  pro_list = ['日期', '店铺名称', '省份', '销售额', '退款额']
172
158
  year = datetime.datetime.today().year
@@ -181,46 +167,122 @@ class DataShow:
181
167
  # print(df_pov[df_pov['省份'] == '广东'])
182
168
  df_pov = df_pov.groupby(['店铺名称', '省份'], as_index=False).agg(
183
169
  **{'销售额': ('销售额', np.sum), '退款额': ('退款额', np.sum)})
184
- if percentage:
185
- df_pov1 = df_pov[df_pov['销售额'] > int(percentage)]
186
- data_list += [('销售 按省份', df_pov1['省份'].tolist(), df_pov1['销售额'].tolist())] # 添加列表数据
187
- df_pov2 = df_pov[df_pov['退款额'] > int(percentage)]
188
- data_list += [('退款 按省份', df_pov2['省份'].tolist(), df_pov2['退款额'].tolist())] # 添加列表数据
170
+ df_pov.drop_duplicates(subset='省份', keep='last', inplace=True, ignore_index=True)
171
+
172
+ # df_pov2: gmv 的饼图
173
+ df_pov['gmv销售'] = df_pov.apply(lambda x: x['销售额'] + x['退款额'], axis=1)
174
+ df_pov.sort_values(['gmv销售'], ascending=[False], ignore_index=True, inplace=True)
175
+ df_pov2 = df_pov.copy()
176
+ sales_sum = df_pov2['gmv销售'].sum()
177
+ df_pov2['省份'] = df_pov2.apply(lambda x: '其他' if (x['gmv销售'] / sales_sum) < percent else x['省份'], axis=1)
178
+
179
+ # df_pov3: 销售额的饼图
180
+ df_pov.sort_values(['销售额'], ascending=[False], ignore_index=True, inplace=True)
181
+ df_pov3 = df_pov.copy()
182
+ sales_sum = df_pov3['销售额'].sum()
183
+ df_pov3['省份'] = df_pov3.apply(lambda x: '其他' if (x['销售额'] / sales_sum) < 0.016 else x['省份'], axis=1)
184
+
185
+ # df_pov1: 省份 销售额 堆叠柱形图
186
+ df_pov1 = df_pov.copy()
187
+ df_pov1 = df_pov1.head(15)
188
+ pov_sales_sum = df_pov1['销售额'].tolist()
189
+ pov_refunds = df_pov1['退款额'].tolist()
190
+ percentages = df_pov1['gmv销售'] / df_pov1['gmv销售'].sum() * 100
191
+ bar_list = [('省份销售/退款', df_pov1['省份'].tolist(), pov_sales_sum, percentages, pov_refunds)]
192
+
193
+ # 将城市等级添加到df
194
+ pov_set = pov_set[['城市等级', '城市']]
195
+ pov_set.drop_duplicates(subset='城市', keep='last', inplace=True, ignore_index=True)
196
+ df_city = pd.merge(df_city, pov_set, left_on=['城市'], right_on=['城市'], how='left')
197
+ df_level = df_city.groupby(['店铺名称', '城市等级'], as_index=False).agg(
198
+ **{'销售额': ('销售额', np.sum), '退款额': ('退款额', np.sum)})
199
+ pie_list = [
200
+ ('按城市等级', df_level['城市等级'].tolist(), df_level['销售额'].tolist()),
201
+ ('净销售 top省份', df_pov3['省份'].tolist(), df_pov3['销售额'].tolist()),
202
+ ('GMV top省份', df_pov2['省份'].tolist(), df_pov2['gmv销售'].tolist())
203
+ ]
204
+
205
+ # df_city1: 城市 销售额 堆叠柱形图
206
+ df_city.drop_duplicates(subset='城市', keep='last', inplace=True, ignore_index=True)
207
+ df_city['gmv销售'] = df_city.apply(lambda x: x['销售额'] + x['退款额'], axis=1)
208
+ df_city.sort_values(['销售额'], ascending=[False], ignore_index=True, inplace=True)
209
+ df_city = df_city[df_city['城市'] != '其他']
210
+ percentages = df_city['gmv销售'] / df_city['gmv销售'].sum() * 100
211
+ df_city1 = df_city.head(15)
212
+ city_sales_sum = df_city1['销售额'].tolist()
213
+ city_refunds = df_city1['退款额'].tolist()
214
+ bar_list += [('城市销售/退款', df_city1['城市'].tolist(), city_sales_sum, percentages, city_refunds)]
189
215
 
190
216
  t_p1 = []
191
217
  for i in range(3):
192
- t_p1.extend([{"type": "pie"}]) # 折线图类型
218
+ t_p1.extend([{"type": "pie"}])
193
219
  t_p2 = []
194
220
  for i in range(3):
195
- t_p2.extend([{"type": "pie"}]) # 饼图类型
221
+ t_p2.extend([{"type": "bar"}])
196
222
  specs = [t_p1, t_p2]
197
223
  fig = make_subplots(rows=2, cols=3, specs=specs)
224
+
198
225
  row = 0
199
226
  col = 0
200
- for item in data_list:
201
- title, labels, values = item
202
- # 计算每个扇区的百分比,并找出哪些扇区应该被保留
203
- total = sum(values)
204
- # 计算每个扇区的百分比,并找出哪些扇区应该被保留
205
- percentage = 1.2 # 阈值百分比
206
- filtered_indices = [i for i, value in enumerate(values) if
207
- (value / total) * 100 >= percentage]
208
- # 提取被保留的扇区的标签和值
209
- filtered_labels = [labels[i] for i in filtered_indices]
210
- filtered_values = [values[i] for i in filtered_indices]
211
- # 添加饼图
212
- fig.add_trace(
213
- go.Pie(
214
- labels=filtered_labels,
215
- values=filtered_values,
216
- name=title,
217
- textinfo='label+percent'
218
- ),
219
- row=row // 3 + 1,
220
- col=col % 3 + 1,
221
- )
227
+ for i in range(6):
228
+ if row // 3 == 0:
229
+ try:
230
+ title, labels, values = pie_list[col % 3]
231
+ except:
232
+ row += 1
233
+ col += 1
234
+ continue
235
+ # 添加饼图
236
+ fig.add_trace(
237
+ go.Pie(
238
+ labels=labels,
239
+ values=values,
240
+ name=title,
241
+ textinfo='label+percent'
242
+ ),
243
+ row=row//3 + 1,
244
+ col=col % 3 + 1,
245
+ )
246
+ else:
247
+ try:
248
+ title, labels, values, percentages, refunds = bar_list[col % 3]
249
+ except:
250
+ row += 1
251
+ col += 1
252
+ continue
253
+ bar = go.Bar(
254
+ x=labels,
255
+ y=values,
256
+ name='销售额',
257
+ orientation='v', # 垂直柱形图
258
+ # text=percentages.map('{:.1f}%'.format), # 设置要显示的文本(百分比)
259
+ # textposition = 'outside', # 设置文本位置在柱形图外部
260
+ width=0.55, # 调整柱子最大宽度
261
+ # marker_color='blue',
262
+ )
263
+ fig.add_trace(
264
+ bar,
265
+ row=row // 3 + 1,
266
+ col=col % 3 + 1,
267
+ )
268
+ bar = go.Bar(
269
+ x=labels,
270
+ y=refunds,
271
+ name='退款额',
272
+ orientation='v', # 垂直柱形图
273
+ text=percentages.map('{:.1f}%'.format), # 设置要显示的文本(百分比)
274
+ textposition='outside', # 设置文本位置在柱形图外部
275
+ width=0.55, # 调整柱子最大宽度
276
+ # marker_color = 'red',
277
+ )
278
+ fig.add_trace(
279
+ bar,
280
+ row=row // 3 + 1,
281
+ col=col % 3 + 1,
282
+ )
283
+
222
284
  x = 0.14 + 0.355 * (row % 3)
223
- y = 1.04 - 0.59 * (row // 3)
285
+ y = 0.99 - 0.58 * (row // 3)
224
286
  fig.add_annotation(
225
287
  text=title,
226
288
  x=x,
@@ -229,31 +291,36 @@ class DataShow:
229
291
  yref='paper',
230
292
  showarrow=True, # 显示箭头
231
293
  align="left", # 文本对齐方式
232
- font=dict(size=14),
294
+ font=dict(size=14)
233
295
  )
234
296
  row += 1
235
297
  col += 1
298
+
236
299
  fig.update_layout(
237
300
  title_text=f'销售地域分布',
238
- # xaxis_title='X Axis',
239
- # yaxis_title='Y Axis',
240
- # width=self.screen_width // 1.4,
241
- # height=self.screen_width // 2,
242
301
  margin=dict(
243
302
  l=100, # 左边距
244
303
  r=100,
245
- t=100, # 上边距
246
- b=100,
304
+ t=80, # 上边距
305
+ b=80,
247
306
  ),
248
307
  legend=dict(
249
- # title='Legend Title', # 图例标题
250
308
  orientation='v', # 图例方向('h' 表示水平,'v' 表示垂直)
251
- # x=0.5, # 图例在图表中的 x 位置(0 到 1 的比例)
252
- # y=1.02, # 图例在图表中的 y 位置(稍微超出顶部以避免遮挡数据)
253
309
  font=dict(
254
310
  size=12 # 图例字体大小
255
311
  )
256
- )
312
+ ),
313
+ barmode='stack', # stack(堆叠)、group(并列)、overlay(覆盖)、relative(相对)
314
+ )
315
+ fig.add_annotation(
316
+ text=f'统计时间周期: {start_date}~{end_date} tips: 饼图剔除了销售<{f"{percent * 100}%"}的数据',
317
+ x=0.5,
318
+ y=-0.09,
319
+ xref='paper', # # 相对于整个图表区域
320
+ yref='paper',
321
+ showarrow=False, # 显示箭头
322
+ align="left", # 文本对齐方式
323
+ font=dict(size=12),
257
324
  )
258
325
  fig.write_html(os.path.join(self.path, f'{filename}.html'))
259
326
 
@@ -369,7 +436,7 @@ class DataShow:
369
436
  )
370
437
  count2 += 1
371
438
  fig.update_layout(
372
- title_text=f'店铺流量来源 最近数据: {max_date}',
439
+ title_text=f'店铺流量来源',
373
440
  # xaxis_title='X Axis',
374
441
  # yaxis_title='Y Axis',
375
442
  # width=self.screen_width // 1.4,
@@ -390,6 +457,16 @@ class DataShow:
390
457
  )
391
458
  )
392
459
  )
460
+ fig.add_annotation(
461
+ text=f'最近数据日期: {max_date}',
462
+ x=0.5,
463
+ y=-0.25,
464
+ xref='paper', # # 相对于整个图表区域
465
+ yref='paper',
466
+ showarrow=False, # 显示箭头
467
+ align="left", # 文本对齐方式
468
+ font=dict(size=12),
469
+ )
393
470
  fig.write_html(os.path.join(self.path, f'{filename}.html'))
394
471
 
395
472
  def tg(self, db_name='聚合数据', table_name='多店推广场景_按日聚合', pro_list=None, filename='多店推广场景', days=None, start_date=None, end_date=None):
@@ -582,8 +659,8 @@ class DataShow:
582
659
  y=values,
583
660
  name=table_name,
584
661
  orientation='v', # 垂直柱形图
585
- text=percentages.map('{:.2f}%'.format), # 设置要显示的文本(百分比)
586
- # textposition = 'outside', # 设置文本位置在柱形图外部
662
+ text=percentages.map('{:.1f}%'.format), # 设置要显示的文本(百分比)
663
+ textposition = 'outside', # 设置文本位置在柱形图外部
587
664
  width=0.55 # 调整柱子最大宽度
588
665
  )
589
666
  row = count // 3 + 1
@@ -714,8 +791,8 @@ class DataShow:
714
791
  y=values,
715
792
  name=table_name,
716
793
  orientation='v', # 垂直柱形图
717
- text=percentages.map('{:.2f}%'.format), # 设置要显示的文本(百分比)
718
- # textposition = 'outside', # 设置文本位置在柱形图外部
794
+ text=percentages.map('{:.1f}%'.format), # 设置要显示的文本(百分比)
795
+ textposition = 'outside', # 设置文本位置在柱形图外部
719
796
  width=0.55 # 调整柱子最大宽度
720
797
  )
721
798
  row = count // 3 + 1
@@ -811,7 +888,7 @@ def main():
811
888
  # last_date=None,
812
889
  # d_str='近30天',
813
890
  # )
814
- #
891
+
815
892
  # # 达摩盘人群画像
816
893
  # crowid_list = [
817
894
  # 40457166,
@@ -825,9 +902,9 @@ def main():
825
902
  ds.pov_city(
826
903
  db_name='生意经3',
827
904
  filename='销售地域分布',
828
- start_date='2024-06-01',
829
- end_date='2024-12-11',
830
- percentage=1,
905
+ start_date='2024-12-01',
906
+ end_date=None,
907
+ percent=0.015,
831
908
  )
832
909
 
833
910
  if __name__ == '__main__':
@@ -1193,6 +1193,83 @@ class MysqlDatasQuery:
1193
1193
  )
1194
1194
  return True
1195
1195
 
1196
+ def item_up(self, db_name='聚合数据', table_name='淘宝店铺货品'):
1197
+ start_date, end_date = self.months_data(num=self.months)
1198
+ projection = {}
1199
+ df_set = self.download.data_to_df(
1200
+ db_name='属性设置3',
1201
+ table_name=f'货品年份基准',
1202
+ start_date=start_date,
1203
+ end_date=end_date,
1204
+ projection={'商品id':1, '上市年份':1},
1205
+ )
1206
+ df = self.download.data_to_df(
1207
+ db_name='市场数据3',
1208
+ table_name=f'淘宝店铺数据',
1209
+ start_date=start_date,
1210
+ end_date=end_date,
1211
+ projection=projection,
1212
+ )
1213
+ df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore') # 转换日期列
1214
+ df = df[df['日期'] == pd.to_datetime('2024-12-12')]
1215
+
1216
+ df_set['商品id'] = df_set['商品id'].astype('int64')
1217
+ df['商品id'] = df['商品id'].astype('int64')
1218
+ df_set.sort_values('商品id', ascending=False, ignore_index=True, inplace=True)
1219
+
1220
+ def check_year(item_id):
1221
+ for item in df_set.to_dict(orient='records'):
1222
+ if item_id > item['商品id']:
1223
+ return item['上市年份']
1224
+
1225
+ df['上市年份'] = df['商品id'].apply(lambda x: check_year(x))
1226
+ p = df.pop('上市年份')
1227
+ df.insert(loc=5, column='上市年份', value=p)
1228
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1229
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name}')
1230
+ set_typ = {
1231
+ '日期': 'date',
1232
+ '店铺id': 'bigint',
1233
+ '店铺名称': 'varchar(255)',
1234
+ '商家id': 'bigint',
1235
+ '商品id': 'bigint',
1236
+ '商品标题': 'varchar(255)',
1237
+ '商品链接': 'varchar(255)',
1238
+ '商品图片': 'varchar(255)',
1239
+ '销量': 'varchar(50)',
1240
+ '页面价': 'int',
1241
+ 'data_sku': 'varchar(1000)',
1242
+ '更新时间': 'timestamp',
1243
+ '上市年份': 'varchar(50)',
1244
+ }
1245
+ m_engine.df_to_mysql(
1246
+ df=df,
1247
+ db_name=db_name,
1248
+ table_name=table_name,
1249
+ # icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1250
+ move_insert=True, # 先删除,再插入
1251
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1252
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1253
+ count=None,
1254
+ filename=None, # 用来追踪处理进度
1255
+ reset_id=True, # 是否重置自增列
1256
+ set_typ=set_typ,
1257
+ )
1258
+ company_engine.df_to_mysql(
1259
+ df=df,
1260
+ db_name=db_name,
1261
+ table_name=table_name,
1262
+ # icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1263
+ move_insert=True, # 先删除,再插入
1264
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1265
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1266
+ count=None,
1267
+ filename=None, # 用来追踪处理进度
1268
+ reset_id=True, # 是否重置自增列
1269
+ set_typ=set_typ,
1270
+ )
1271
+
1272
+
1196
1273
  def spph(self, db_name='聚合数据', table_name='天猫_商品排行'):
1197
1274
  """ """
1198
1275
  start_date, end_date = self.months_data(num=self.months)
@@ -3840,7 +3917,7 @@ if __name__ == '__main__':
3840
3917
  sdq = MysqlDatasQuery() # 实例化数据处理类
3841
3918
  sdq.months = 1 # 设置数据周期, 1 表示近 2 个月
3842
3919
  sdq.update_service = True # 调试时加,true: 将数据写入 mysql 服务器
3843
- sdq.tg_rqbb(db_name='聚合数据', table_name='天猫_人群报表')
3920
+ sdq.item_up()
3844
3921
 
3845
3922
  # string = '30-34岁,35-39岁,40-49岁'
3846
3923
  # d = "~".join(re.findall(r'(\d+)\D.*\D(\d+)岁', string)[0])
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.4.1
3
+ Version: 3.4.3
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -2,9 +2,9 @@ mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
2
2
  mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
3
3
  mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
4
4
  mdbq/aggregation/aggregation.py,sha256=-yzApnlqSN2L0E1YMu5ml-W827qpKQvWPCOI7jj2kzY,80264
5
- mdbq/aggregation/datashow.py,sha256=Hwpt9REb7Iep_ptdVw0TqebYaJNNyvNs6dyOB_LqozM,34893
5
+ mdbq/aggregation/datashow.py,sha256=_pyv7ZmKpBp04bdE_N_RTtNbyBXHcOA-TAQ1vFxl8p8,37881
6
6
  mdbq/aggregation/optimize_data.py,sha256=RXIv7cACCgYyehAxMjUYi_S7rVyjIwXKWMaM3nduGtA,3068
7
- mdbq/aggregation/query_data.py,sha256=FiNZhL5_El2B5ADfCPGUZXsE2iZd3UmGml9Te9qJIpU,175364
7
+ mdbq/aggregation/query_data.py,sha256=9NALeHTP9tblOEPyntLBRtdroLG_qN9qWi34Hg4rXFM,178891
8
8
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
9
9
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
10
10
  mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
@@ -34,7 +34,7 @@ mdbq/pbix/refresh_all.py,sha256=OBT9EewSZ0aRS9vL_FflVn74d4l2G00wzHiikCC4TC0,5926
34
34
  mdbq/pbix/refresh_all_old.py,sha256=_pq3WSQ728GPtEG5pfsZI2uTJhU8D6ra-htIk1JXYzw,7192
35
35
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
36
36
  mdbq/spider/aikucun.py,sha256=v7VO5gtEXR6_4Q6ujbTyu1FHu7TXHcwSQ6hIO249YH0,22208
37
- mdbq-3.4.1.dist-info/METADATA,sha256=n1MFzq9VZzCy63dJOU-fcJSZ0lZTXawBaIW5vXngzCE,243
38
- mdbq-3.4.1.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
39
- mdbq-3.4.1.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
40
- mdbq-3.4.1.dist-info/RECORD,,
37
+ mdbq-3.4.3.dist-info/METADATA,sha256=O8d3FiyMrxJoF1-_OcK-YsIQ01m3hQaGxvn8Pk2UoYY,243
38
+ mdbq-3.4.3.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
39
+ mdbq-3.4.3.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
40
+ mdbq-3.4.3.dist-info/RECORD,,
File without changes