mdbq 3.3.4__py3-none-any.whl → 3.3.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mdbq/req_post/req_tb.py DELETED
@@ -1,624 +0,0 @@
1
- # -*- coding: UTF-8 –*-
2
- import os
3
- import time
4
- import datetime
5
- import pandas as pd
6
- import warnings
7
- import requests
8
- from mdbq.other import ua_sj
9
- from mdbq.config import get_myconf
10
- from mdbq.mysql import mysql
11
- import json
12
- import socket
13
- import platform
14
- import random
15
-
16
- warnings.filterwarnings('ignore')
17
-
18
-
19
- class RequestData:
20
- def __init__(self):
21
- self.date = datetime.date.today().strftime('%Y%m%d')
22
- self.url = None
23
- self.headers = None
24
- self.cookies = None
25
- self.datas = []
26
- self.path = None
27
- self.filename = None
28
- self.is_json_file = False
29
- self.df = pd.DataFrame()
30
-
31
- def qxg_hx_data(self):
32
- """ 抢先购 预热期核心指标 """
33
- date = datetime.date.today().strftime('%Y-%m-%d')
34
- url = (f'https://sycm.taobao.com/datawar/v4/activity/detail/kpi/coreIndex/live.json?'
35
- f'activityId=92072444'
36
- f'&status=1'
37
- f'&dateType=today'
38
- f'&dateRange={date}%7C{date}'
39
- f'&_=1729216673692'
40
- f'&token=0939158d0'
41
- )
42
- headers = {'User-Agent': ua_sj.get_ua()}
43
- cookies = {
44
- 'session': 't=c198527347800dafa75165f084784668; thw=cn; cc_gray=1; 2210244713719_euacm_ac_c_uid_=713197610; 2210244713719_euacm_ac_rs_uid_=713197610; _portal_version_=new; xlly_s=1; _euacm_ac_l_uid_=2210244713719; _tb_token_=GzT2Grwtrep02E5awyhr; _samesite_flag_=true; 3PcFlag=1729299229095; cookie2=15f3dfc1aa68e07b05043bf7f8fb5565; sgcookie=E100r7l2QLYERk5SKLinmW40F%2BbdvBhfP7ZwSPi%2BjxeXI6Y%2B%2BraqfGzS%2BKX3ME%2FRfXZKeLBwECj63B245VuW%2FZBpg5X3Ydq2WK05z0QvsUxuyJQNNaVJTDy8WSQXRpKhFDHF; unb=2210244713719; sn=%E4%B8%87%E9%87%8C%E9%A9%AC%E5%AE%98%E6%96%B9%E6%97%97%E8%88%B0%E5%BA%97%3A%E6%8E%A8%E5%B9%BF; uc1=cookie14=UoYcCoJCtZ6mUg%3D%3D&cookie21=UtASsssmfufd; csg=7d17ab64; _cc_=V32FPkk%2Fhw%3D%3D; cancelledSubSites=empty; skt=214c26d846e4ece2; cna=8+iAHxeojXcCAXjsc5Mt+BAV; v=0; XSRF-TOKEN=a4816e90-82aa-4743-b438-67e826b8ebbe; datawar_version=new; mtop_partitioned_detect=1; _m_h5_tk=c1140ed9be58a574cf0740ca0fad2f9c_1729340693031; _m_h5_tk_enc=2a93813f4e75d7928cc79cc6bc9db5d7; _euacm_ac_rs_sid_=67090549; JSESSIONID=3DBCB84C04569B30741EF0263731963E; tfstk=gbRSfuVwPHdqd3wyBX3VCcGDfR5IVHGN9y_pSeFzJ_CRvXKpc9FEE_WCOnI2ag8Pww1BSHZrr95ROMTMVJ8PY8-XJet_aL-eYzvDbFFyaYfUO_fh9coZ_fzkr6fKIj10GzfA-NE-TgF-MUjmccen_f8kyz7-7Ehwagr3NGjd9TBLkZIcSMQpvTeYHibhJuQd2qTAmie8ygBRHsQP-7Cd9HLxlwcOeP_IFgYSohIbYoEQeUSb9WdfkDj9PrNGyQ_5FGLJNLJkGlX5XUIb9cAVGNjA5In34MAXkQQHDjP5OEQBf_pjD7tBydxhW3hb2a9J5FWXtcFCoKKl3a9jJ-IJWgfRcB03tgpyJBWBwcUF2QxyGOA3VmSeQERRhhn4GHXBedCJOcGA4FVNfUSadr6gOZsZlqw3KbGMRi1XJjWceZb53qgb2pXRoZ_mlqw3KTQcPagjluph.; isg=BOrqXtnOebYXhfQ1b9KgdzAAO1aMW2618WeuUnSgRz1Qp45hXO-pxEuRN9O7V-ZN'}
45
- # cookies = {}
46
- path = '/Users/xigua/Downloads'
47
- filename = 'test'
48
- result = requests.get(
49
- url=url,
50
- headers=headers,
51
- cookies=cookies,
52
- )
53
- m_data = json.loads(result.text)
54
- # print(m_data)
55
- update_time = m_data['data']['updateTime']
56
- all_data = m_data['data']['data']
57
- timestamp = all_data['statDate']['value'] // 1000 # 毫秒转为秒,不然无法转换时间戳
58
-
59
- datas=[{
60
- '日期': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(int(timestamp))),
61
- '预热加购人数': all_data['preheatCartByrCnt']['value'],
62
- '加购转化率': all_data['cartRate']['value'],
63
- '预热加购件数': all_data['preheatCartItmCnt']['value'],
64
- '预热访客数': all_data['preheatUv']['value'],
65
- '收藏转化率': all_data['cltRate']['value'],
66
- '预热收藏次数': all_data['preheatCltItmCnt']['value'],
67
- '预热收藏人数': all_data['preheatCltByrCnt']['value'],
68
- '更新时间': update_time,
69
- '促销活动': '2024双11抢先购',
70
- '版块': '预热期核心指标',
71
- }]
72
- df = pd.DataFrame(datas)
73
- df = df.astype({
74
- '预热加购人数': int,
75
- '预热加购件数': int,
76
- '预热访客数': int,
77
- '预热收藏次数': int,
78
- '预热收藏人数': int,
79
- '促销活动': str,
80
- '版块': str,
81
- }, errors='raise')
82
- return '活动分析2', '2024双11抢先购预热期核心指标', df # 注意这些是实际数据表名字
83
-
84
- def ys_ll_data(self):
85
- """ 活动预售页面 流量来源 """
86
- date = datetime.date.today().strftime('%Y%m%d')
87
- url = (f'https://sycm.taobao.com/datawar/v6/activity/detail/guide/chl/presale/online/v4.json?'
88
- f'dateRange={date}%7C{date}'
89
- f'&dateType=today'
90
- f'&pageSize=10'
91
- f'&page=1'
92
- f'&order=desc'
93
- f'&orderBy=frontPreheatUv' # 必传参数
94
- f'&activityId=94040472' # 关键,必传参数
95
- # f'&activityStatus=3'
96
- # f'&device=2'
97
- # f'&indexCode=frontPreheatUv%2CfrontPayByrCnt%2CfrontPayRate'
98
- # f'&_=1729079731795'
99
- # f'&token=7e94ba030'
100
- )
101
- headers = {
102
- # "referer": "https://dmp.taobao.com/index_new.html",
103
- 'User-Agent': ua_sj.get_ua(),
104
- }
105
- cookies = {
106
- 'session': 't=c198527347800dafa75165f084784668; thw=cn; cc_gray=1; 2210244713719_euacm_ac_c_uid_=713197610; 2210244713719_euacm_ac_rs_uid_=713197610; _portal_version_=new; xlly_s=1; _euacm_ac_l_uid_=2210244713719; _tb_token_=GzT2Grwtrep02E5awyhr; _samesite_flag_=true; 3PcFlag=1729299229095; cookie2=15f3dfc1aa68e07b05043bf7f8fb5565; sgcookie=E100r7l2QLYERk5SKLinmW40F%2BbdvBhfP7ZwSPi%2BjxeXI6Y%2B%2BraqfGzS%2BKX3ME%2FRfXZKeLBwECj63B245VuW%2FZBpg5X3Ydq2WK05z0QvsUxuyJQNNaVJTDy8WSQXRpKhFDHF; unb=2210244713719; sn=%E4%B8%87%E9%87%8C%E9%A9%AC%E5%AE%98%E6%96%B9%E6%97%97%E8%88%B0%E5%BA%97%3A%E6%8E%A8%E5%B9%BF; uc1=cookie14=UoYcCoJCtZ6mUg%3D%3D&cookie21=UtASsssmfufd; csg=7d17ab64; _cc_=V32FPkk%2Fhw%3D%3D; cancelledSubSites=empty; skt=214c26d846e4ece2; cna=8+iAHxeojXcCAXjsc5Mt+BAV; v=0; XSRF-TOKEN=a4816e90-82aa-4743-b438-67e826b8ebbe; datawar_version=new; mtop_partitioned_detect=1; _m_h5_tk=c1140ed9be58a574cf0740ca0fad2f9c_1729340693031; _m_h5_tk_enc=2a93813f4e75d7928cc79cc6bc9db5d7; _euacm_ac_rs_sid_=67090549; JSESSIONID=3DBCB84C04569B30741EF0263731963E; tfstk=gbRSfuVwPHdqd3wyBX3VCcGDfR5IVHGN9y_pSeFzJ_CRvXKpc9FEE_WCOnI2ag8Pww1BSHZrr95ROMTMVJ8PY8-XJet_aL-eYzvDbFFyaYfUO_fh9coZ_fzkr6fKIj10GzfA-NE-TgF-MUjmccen_f8kyz7-7Ehwagr3NGjd9TBLkZIcSMQpvTeYHibhJuQd2qTAmie8ygBRHsQP-7Cd9HLxlwcOeP_IFgYSohIbYoEQeUSb9WdfkDj9PrNGyQ_5FGLJNLJkGlX5XUIb9cAVGNjA5In34MAXkQQHDjP5OEQBf_pjD7tBydxhW3hb2a9J5FWXtcFCoKKl3a9jJ-IJWgfRcB03tgpyJBWBwcUF2QxyGOA3VmSeQERRhhn4GHXBedCJOcGA4FVNfUSadr6gOZsZlqw3KbGMRi1XJjWceZb53qgb2pXRoZ_mlqw3KTQcPagjluph.; isg=BOrqXtnOebYXhfQ1b9KgdzAAO1aMW2618WeuUnSgRz1Qp45hXO-pxEuRN9O7V-ZN'}
107
-
108
- path = '/Users/xigua/Downloads'
109
- filename = 'test'
110
-
111
- result = requests.get(
112
- url=url,
113
- headers=headers,
114
- cookies=cookies,
115
- )
116
- m_data = json.loads(result.text)
117
- # print(m_data)
118
- update_time = m_data['data']['updateTime']
119
- # pt_data = data['data']['data'][0] # 平台流量
120
- # gg_data = data['data']['data'][1] # 广告流量
121
- datas = []
122
- for all_data in m_data['data']['data']:
123
- datas.append(
124
- {
125
- 'frontPayByrCnt': all_data['frontPayByrCnt']['value'],
126
- '一级标识id': all_data['pageId']['value'],
127
- '二级标识id': '',
128
- '三级标识id': '',
129
- '一级来源': all_data['pageName']['value'],
130
- '二级来源': '',
131
- '三级来源': '',
132
- '活动商品访客数(定金期)': all_data['frontPreheatUv']['value'],
133
- '定金支付买家数': all_data['frontPayByrCnt']['value'],
134
- '定金支付转化率': all_data['frontPayRate']['value'],
135
- '日期': all_data['statDateStr']['value'],
136
- '更新时间': update_time,
137
- '促销活动': '2024双11预售',
138
- '版块': '流量来源',
139
- }
140
- )
141
- if 'children' not in all_data.keys(): # 这一句有点多余,因为一级来源必定细分有二级来源
142
- continue
143
- for children_data in all_data['children']:
144
- one_source_id = children_data['pPageId']['value']
145
- one_source_name = children_data['pPageName']['value']
146
- datas.append(
147
- {
148
- 'frontPayByrCnt': children_data['frontPayByrCnt']['value'],
149
- '一级标识id': children_data['pPageId']['value'],
150
- '二级标识id': children_data['pageId']['value'],
151
- '三级标识id': '',
152
- '一级来源': children_data['pPageName']['value'],
153
- '二级来源': children_data['pageName']['value'],
154
- '三级来源': '',
155
- '活动商品访客数(定金期)': children_data['frontPreheatUv']['value'],
156
- '定金支付买家数': children_data['frontPayByrCnt']['value'],
157
- '定金支付转化率': children_data['frontPayRate']['value'],
158
- '日期': children_data['statDateStr']['value'],
159
- '更新时间': update_time,
160
- '促销活动': '2024双11预售',
161
- '版块': '流量来源',
162
- }
163
- )
164
- # print(children_data['children'])
165
- # print(children_data)
166
- if 'children' not in children_data.keys(): # 部分二级来源没有细分的三级来源,因为需要跳过 children 字段
167
- continue
168
- for children_children_data in children_data['children']:
169
- # print(children_children_data)
170
- # print(one_source_name)
171
- datas.append(
172
- {
173
- 'frontPayByrCnt': children_children_data['frontPayByrCnt']['value'],
174
- '一级标识id': one_source_id,
175
- '二级标识id': children_children_data['pPageId']['value'],
176
- '三级标识id': children_children_data['pageId']['value'],
177
- '一级来源': one_source_name,
178
- '二级来源': children_children_data['pPageName']['value'],
179
- '三级来源': children_children_data['pageName']['value'],
180
- '活动商品访客数(定金期)': children_children_data['frontPreheatUv']['value'],
181
- '定金支付买家数': children_children_data['frontPayByrCnt']['value'],
182
- '定金支付转化率': children_children_data['frontPayRate']['value'],
183
- '日期': children_children_data['statDateStr']['value'],
184
- '更新时间': update_time,
185
- '促销活动': '2024双11预售',
186
- '版块': '流量来源',
187
- }
188
- )
189
- for item in datas:
190
- if item['日期'] != '':
191
- item.update({'日期': f'{item['日期'][0:4]}-{item['日期'][4:6]}-{item['日期'][6:8]}'})
192
- if self.is_json_file:
193
- if self.path and self.filename:
194
- with open(os.path.join(self.path, f'{self.filename}.json'), 'w') as f:
195
- json.dump(datas, f, ensure_ascii=False, sort_keys=True, indent=4)
196
- else:
197
- print(f'尚未指定 self.path/ self.filename')
198
- df = pd.DataFrame(datas)
199
- df.fillna('0', inplace=True)
200
- df = df.astype(
201
- {
202
- 'frontPayByrCnt': int,
203
- '一级标识id': str,
204
- '二级标识id': str,
205
- '三级标识id': str,
206
- '一级来源': str,
207
- '二级来源': str,
208
- '三级来源': str,
209
- '活动商品访客数(定金期)': int,
210
- '定金支付买家数': int,
211
- '促销活动': str,
212
- '版块': str,
213
- }, errors='raise')
214
- return '活动分析2', '2024双11预售实时流量分析', df # 注意这些是实际数据表名字
215
-
216
- def qxg_ll(self):
217
- flow_biz_types = {
218
- 'classic': '非全站推广期',
219
- 'qzt': '全站推广期',
220
- }
221
- page_types = {
222
- 'item': '商品流量',
223
- 'shop': '店铺流量',
224
- 'live': '直播流量',
225
- 'content': '内容流量',
226
- }
227
- for k_flow, v_flow in flow_biz_types.items():
228
- for k_page, v_page in page_types.items():
229
- if v_flow == '全站推广期' and v_page != '商品流量':
230
- continue # 只有商品流量才可以传 qzt值
231
- now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S ")
232
- print(f'{now} {v_flow} -> {v_page}: 正在获取数据...')
233
- date = datetime.date.today().strftime('%Y%m%d')
234
- url = (
235
- f'https://sycm.taobao.com/flow/v5/live/shop/source/tree/v4.json?'
236
- f'dateRange={date}%7C{date}'
237
- f'&dateType=today'
238
- f'&order=desc'
239
- f'&orderBy=uv'
240
- f'&flowBizType={k_flow}' # classic: 非全站推广期,qzt: 全站推广期(只有商品流量才可以传 qzt值)
241
- f'&pageType={k_page}' # item:商品流量,shop: 店铺流量,live: 直播流量, content: 内容流量
242
- f'&crowdType=all'
243
- f'&activityId=92072444'
244
- f'&indexCode=uv'
245
- # f'&_=1729232086296'
246
- # f'&token=2507b8098'
247
- )
248
- headers = {
249
- # "referer": "https://dmp.taobao.com/index_new.html",
250
- 'User-Agent': ua_sj.get_ua(),
251
- }
252
- cookies = {
253
- 'session': 't=c198527347800dafa75165f084784668; thw=cn; cc_gray=1; 2210244713719_euacm_ac_c_uid_=713197610; 2210244713719_euacm_ac_rs_uid_=713197610; _portal_version_=new; xlly_s=1; _euacm_ac_l_uid_=2210244713719; _tb_token_=GzT2Grwtrep02E5awyhr; _samesite_flag_=true; 3PcFlag=1729299229095; cookie2=15f3dfc1aa68e07b05043bf7f8fb5565; sgcookie=E100r7l2QLYERk5SKLinmW40F%2BbdvBhfP7ZwSPi%2BjxeXI6Y%2B%2BraqfGzS%2BKX3ME%2FRfXZKeLBwECj63B245VuW%2FZBpg5X3Ydq2WK05z0QvsUxuyJQNNaVJTDy8WSQXRpKhFDHF; unb=2210244713719; sn=%E4%B8%87%E9%87%8C%E9%A9%AC%E5%AE%98%E6%96%B9%E6%97%97%E8%88%B0%E5%BA%97%3A%E6%8E%A8%E5%B9%BF; uc1=cookie14=UoYcCoJCtZ6mUg%3D%3D&cookie21=UtASsssmfufd; csg=7d17ab64; _cc_=V32FPkk%2Fhw%3D%3D; cancelledSubSites=empty; skt=214c26d846e4ece2; cna=8+iAHxeojXcCAXjsc5Mt+BAV; v=0; XSRF-TOKEN=a4816e90-82aa-4743-b438-67e826b8ebbe; datawar_version=new; mtop_partitioned_detect=1; _m_h5_tk=c1140ed9be58a574cf0740ca0fad2f9c_1729340693031; _m_h5_tk_enc=2a93813f4e75d7928cc79cc6bc9db5d7; _euacm_ac_rs_sid_=67090549; JSESSIONID=3DBCB84C04569B30741EF0263731963E; tfstk=gbRSfuVwPHdqd3wyBX3VCcGDfR5IVHGN9y_pSeFzJ_CRvXKpc9FEE_WCOnI2ag8Pww1BSHZrr95ROMTMVJ8PY8-XJet_aL-eYzvDbFFyaYfUO_fh9coZ_fzkr6fKIj10GzfA-NE-TgF-MUjmccen_f8kyz7-7Ehwagr3NGjd9TBLkZIcSMQpvTeYHibhJuQd2qTAmie8ygBRHsQP-7Cd9HLxlwcOeP_IFgYSohIbYoEQeUSb9WdfkDj9PrNGyQ_5FGLJNLJkGlX5XUIb9cAVGNjA5In34MAXkQQHDjP5OEQBf_pjD7tBydxhW3hb2a9J5FWXtcFCoKKl3a9jJ-IJWgfRcB03tgpyJBWBwcUF2QxyGOA3VmSeQERRhhn4GHXBedCJOcGA4FVNfUSadr6gOZsZlqw3KbGMRi1XJjWceZb53qgb2pXRoZ_mlqw3KTQcPagjluph.; isg=BOrqXtnOebYXhfQ1b9KgdzAAO1aMW2618WeuUnSgRz1Qp45hXO-pxEuRN9O7V-ZN'}
254
- self.qxg_ll_data(
255
- url=url,
256
- headers=headers,
257
- cookies=cookies,
258
- flow_biz_type=v_flow,
259
- page_type=v_page,
260
- )
261
- time.sleep(random.randint(5, 10))
262
- df = pd.concat(self.datas)
263
- df.fillna(0, inplace=True)
264
- df = df.astype(
265
- {
266
- '支付买家数': int,
267
- '详情页访客数': int,
268
- '来源等级': int,
269
- 'showDetailChannel': int,
270
- }, errors='raise')
271
- # df.to_csv('/Users/xigua/Downloads/test.csv', index=False, header=True, encoding='utf-8_sig')
272
- return '活动分析2', '2024双11抢先购预热期流量来源', df # 注意这些是实际数据表名字
273
-
274
- def qxg_ll_data(self, url, headers, cookies, flow_biz_type, page_type):
275
- """ 抢先购 流量来源 """
276
- result = requests.get(
277
- url=url,
278
- headers=headers,
279
- cookies=cookies,
280
- )
281
- json_datas = json.loads(result.text)
282
- update_time = json_datas['data']['updateTime']
283
- # print(update_time)
284
- datas = []
285
- json_datas = json_datas['data']['data']
286
- dict_data = {}
287
- if page_type == '直播流量' or page_type == '内容流量':
288
- for item in json_datas:
289
- datas.append(
290
- {
291
- '访客数': item['uv']['value'],
292
- 'pageId': item['pageId']['value'],
293
- '0级来源': item['pageName']['value'],
294
- 'pPageId': item['pPageId']['value'],
295
- '日期': update_time,
296
- '更新时间': update_time,
297
- '促销活动': '2024双11抢先购',
298
- '版块': '流量来源',
299
- '来源分类': flow_biz_type,
300
- '流量类型': page_type,
301
- })
302
- json_datas = json_datas[0]['children']
303
-
304
- for all_data in json_datas:
305
- # one_source_id = all_data['pageId']['value']
306
- one_source_name = all_data['pageName']['value']
307
- # print(all_data)
308
- for k_first, v_first in all_data.items():
309
- # print(k_first, v_first)
310
-
311
- if k_first == 'children':
312
- continue
313
- for k_second, v_second in v_first.items():
314
- if k_second != 'value':
315
- dict_data.update({k_second: v_second})
316
- dict_data.update(
317
- {
318
- 'guideToShortVideoUv': all_data['guideToShortVideoUv']['value'],
319
- 'hiddenIndexgroup': all_data['hiddenIndexgroup']['value'],
320
- '访客数': all_data['uv']['value'],
321
- '访客数占比': all_data['uv']['ratio'],
322
- '支付买家数': all_data['payByrCnt']['value'],
323
- '详情页访客数': all_data['ipvUvRelate']['value'],
324
- '支付转化率': all_data['payRate']['value'],
325
- 'orderByrCnt': all_data['orderByrCnt']['value'],
326
- 'showDesc': all_data['showDesc']['value'],
327
- 'showChannel': all_data['showChannel']['value'],
328
- '来源等级': all_data['pageLevel']['value'],
329
- 'channelType': all_data['channelType']['value'],
330
- 'orderAmt': all_data['orderAmt']['value'],
331
- 'pageId': all_data['pageId']['value'],
332
- 'pPageId': all_data['pPageId']['value'],
333
- 'payAmt': all_data['payAmt']['value'],
334
- '一级来源': all_data['pageName']['value'],
335
- '二级来源': '',
336
- '三级来源': '',
337
- 'showDetailChannel': all_data['showDetailChannel']['value'],
338
- 'pageDesc': all_data['pageDesc']['value'],
339
- 'payPct': all_data['payPct']['value'],
340
- 'pPageId': all_data['pPageId']['value'],
341
- 'crtRate': all_data['crtRate']['value'],
342
- '日期': update_time,
343
- '更新时间': update_time,
344
- '促销活动': '2024双11抢先购',
345
- '版块': '流量来源',
346
- '来源分类': flow_biz_type,
347
- '流量类型': page_type,
348
- }
349
- )
350
- datas.append(dict_data)
351
-
352
- if 'children' not in all_data.keys(): # 这一句有点多余,因为一级来源必定细分有二级来源
353
- continue
354
-
355
- for children_data in all_data['children']:
356
- # one_source_id = children_data['pPageId']['value']
357
- second_source_name = children_data['pageName']['value']
358
- for k_first, v_first in children_data.items():
359
- # print(k_first, v_first)
360
- dict_data = {}
361
- if k_first == 'children':
362
- continue
363
- for k_second, v_second in v_first.items():
364
- if k_second != 'value':
365
- dict_data.update({k_second: v_second})
366
- dict_data.update(
367
- {
368
- 'guideToShortVideoUv': children_data['guideToShortVideoUv']['value'],
369
- 'hiddenIndexgroup': children_data['hiddenIndexgroup']['value'],
370
- '访客数': children_data['uv']['value'],
371
- '访客数占比': children_data['uv']['ratio'],
372
- '支付买家数': children_data['payByrCnt']['value'],
373
- '详情页访客数': children_data['ipvUvRelate']['value'],
374
- '支付转化率': children_data['payRate']['value'],
375
- 'orderByrCnt': children_data['orderByrCnt']['value'],
376
- 'showDesc': children_data['showDesc']['value'],
377
- 'showChannel': children_data['showChannel']['value'],
378
- '来源等级': children_data['pageLevel']['value'],
379
- 'channelType': children_data['channelType']['value'],
380
- 'orderAmt': children_data['orderAmt']['value'],
381
- 'pageId': children_data['pageId']['value'],
382
- 'pPageId': children_data['pPageId']['value'],
383
- 'payAmt': children_data['payAmt']['value'],
384
- '一级来源': one_source_name,
385
- '二级来源': children_data['pageName']['value'],
386
- '三级来源': '',
387
- 'showDetailChannel': children_data['showDetailChannel']['value'],
388
- 'pageDesc': children_data['pageDesc']['value'],
389
- 'payPct': children_data['payPct']['value'],
390
- 'pPageId': children_data['pPageId']['value'],
391
- 'crtRate': children_data['crtRate']['value'],
392
- '日期': update_time,
393
- '更新时间': update_time,
394
- '促销活动': '2024双11抢先购',
395
- '版块': '流量来源',
396
- '来源分类': flow_biz_type,
397
- '流量类型': page_type,
398
- }
399
- )
400
- datas.append(dict_data)
401
- # print(children_data['children'])
402
- # print(children_data)
403
- if 'children' not in children_data.keys(): # 部分二级来源没有细分的三级来源,因为需要跳过 children 字段
404
- continue
405
- for children_children_data in children_data['children']:
406
- # print(children_children_data)
407
- # print(one_source_name)
408
- for k_first, v_first in children_data.items():
409
- # print(k_first, v_first)
410
- dict_data = {}
411
- if k_first == 'children':
412
- continue
413
- for k_second, v_second in v_first.items():
414
- if k_second != 'value':
415
- dict_data.update({k_second: v_second})
416
- dict_data.update(
417
- {
418
- 'guideToShortVideoUv': children_children_data['guideToShortVideoUv']['value'],
419
- 'hiddenIndexgroup': children_children_data['hiddenIndexgroup']['value'],
420
- '访客数': children_children_data['uv']['value'],
421
- '访客数占比': children_children_data['uv']['ratio'],
422
- '支付买家数': children_children_data['payByrCnt']['value'],
423
- '详情页访客数': children_children_data['ipvUvRelate']['value'],
424
- '支付转化率': children_children_data['payRate']['value'],
425
- 'orderByrCnt': children_children_data['orderByrCnt']['value'],
426
- 'showDesc': children_children_data['showDesc']['value'],
427
- 'showChannel': children_children_data['showChannel']['value'],
428
- '来源等级': children_children_data['pageLevel']['value'],
429
- 'channelType': children_children_data['channelType']['value'],
430
- 'orderAmt': children_children_data['orderAmt']['value'],
431
- 'pageId': children_children_data['pageId']['value'],
432
- 'pPageId': children_children_data['pPageId']['value'],
433
- 'payAmt': children_children_data['payAmt']['value'],
434
- '一级来源': one_source_name,
435
- '二级来源': second_source_name,
436
- '三级来源': children_children_data['pageName']['value'],
437
- 'showDetailChannel': children_children_data['showDetailChannel']['value'],
438
- 'pageDesc': children_children_data['pageDesc']['value'],
439
- 'payPct': children_children_data['payPct']['value'],
440
- 'pPageId': children_children_data['pPageId']['value'],
441
- 'crtRate': children_children_data['crtRate']['value'],
442
- '日期': update_time,
443
- '更新时间': update_time,
444
- '促销活动': '2024双11抢先购',
445
- '版块': '流量来源',
446
- '来源分类': flow_biz_type,
447
- '流量类型': page_type,
448
- }
449
- )
450
- datas.append(dict_data)
451
- # for item in datas:
452
- # if item['日期'] != '':
453
- # item.update({'日期': f'{item['日期'][0:4]}-{item['日期'][4:6]}-{item['日期'][6:8]}'})
454
- df = pd.DataFrame(datas)
455
- self.datas.append(df)
456
-
457
- def hd_sp(self, date, url, headers, cookies, path, filename, pages=5):
458
- """ 活动预售页面 分商品效果 """
459
-
460
- self.date = date
461
- self.url = url
462
- self.headers = headers
463
- self.cookies = cookies
464
- self.path = path
465
- self.filename = filename
466
- for page in range(1, pages + 1):
467
- self.url = f'{self.url}&page={page}'
468
- result = requests.get(
469
- self.url,
470
- headers=self.headers,
471
- cookies=self.cookies,
472
- )
473
- m_data = json.loads(result.text)
474
- # print(m_data)
475
- # with open(os.path.join(self.path, f'{self.filename}.json'), 'w') as f:
476
- # json.dump(m_data, f, ensure_ascii=False, sort_keys=True, indent=4)
477
- update_time = m_data['data']['updateTime']
478
- time_stamp = m_data['data']['timestamp']
479
- # pt_data = data['data']['data'][0] # 平台流量
480
- # gg_data = data['data']['data'][1] # 广告流量
481
- for all_data in m_data['data']['data']['data']:
482
- self.datas.append({
483
- 'activityItemDepUv': all_data['activityItemDepUv']['value'],
484
- '商品链接': all_data['item']['detailUrl'],
485
- '商品id': all_data['item']['itemId'],
486
- '商品图片': all_data['item']['pictUrl'],
487
- 'startDate': all_data['item']['startDate'],
488
- '商品标题': all_data['item']['title'],
489
- '预售订单金额': all_data['presaleOrdAmt']['value'],
490
- '定金支付件数': all_data['presalePayItemCnt']['value'],
491
- '预售访客人数': all_data['presaleUv']['value'],
492
- '定金支付金额': all_data['sumPayDepositAmt']['value'],
493
- '定金支付买家数': all_data['sumPayDepositByrCnt']['value'],
494
- '支付转化率': all_data['uvPayRate']['value'],
495
- '日期': date,
496
- '时间戳': time_stamp,
497
- '更新时间': update_time,
498
- '促销活动': '2024双11预售',
499
- '类型': '分商品效果',
500
- })
501
- time.sleep(random.randint(5, 10))
502
- for item in self.datas:
503
- if item['日期'] != '':
504
- item.update({'日期': f'{item['日期'][0:4]}-{item['日期'][4:6]}-{item['日期'][6:8]}'})
505
- if self.is_json_file:
506
- with open(os.path.join(self.path, f'{self.filename}.json'), 'w') as f:
507
- json.dump(self.datas, f, ensure_ascii=False, sort_keys=True, indent=4)
508
-
509
- def request_jd(self, date, url, headers, cookies, path, filename):
510
- """ 京东 """
511
- self.date = date
512
- self.url = url
513
- self.headers = headers
514
- self.cookies = cookies
515
- self.path = path
516
- self.filename = filename
517
- result = requests.post(
518
- url,
519
- headers=headers,
520
- cookies=cookies,
521
- )
522
- print(result.text)
523
-
524
-
525
- def hd_sp_data(service_databases=[], db_name=None, table_name=None, pages=5):
526
- """ 2024双11预售 分商品效果 """
527
- date = datetime.date.today().strftime('%Y%m%d')
528
- url = (
529
- f'https://sycm.taobao.com/datawar/v7/presaleActivity/itemCoreIndex/getItemListLive.json?'
530
- f'activityId=94040472'
531
- f'&itemType=0' # 必传, 查看全部商品 0, 活动商品 1 , 跨店满减商品 2 ,官方立减 3(无数据)
532
- f'&device=1'
533
- f'&dateRange={date}%7C{date}'
534
- f'&dateType=today'
535
- f'&pageSize=10' # 必传
536
- # f'&page=1' # 必传
537
- # f'&order=desc'
538
- # f'&orderBy=presaleOrdAmt'
539
- # f'&indexCode=presaleOrdAmt%2CsumPayDepositByrCnt%2CpresalePayItemCnt'
540
- # f'&_=1729133575797'
541
- )
542
- headers = {
543
- # "referer": "https://dmp.taobao.com/index_new.html",
544
- 'User-Agent': ua_sj.get_ua(),
545
- }
546
- cookies = {
547
- 'session': 't=c198527347800dafa75165f084784668; thw=cn; cc_gray=1; 2210244713719_euacm_ac_c_uid_=713197610; 2210244713719_euacm_ac_rs_uid_=713197610; _portal_version_=new; xlly_s=1; _euacm_ac_l_uid_=2210244713719; _tb_token_=GzT2Grwtrep02E5awyhr; _samesite_flag_=true; 3PcFlag=1729299229095; cookie2=15f3dfc1aa68e07b05043bf7f8fb5565; sgcookie=E100r7l2QLYERk5SKLinmW40F%2BbdvBhfP7ZwSPi%2BjxeXI6Y%2B%2BraqfGzS%2BKX3ME%2FRfXZKeLBwECj63B245VuW%2FZBpg5X3Ydq2WK05z0QvsUxuyJQNNaVJTDy8WSQXRpKhFDHF; unb=2210244713719; sn=%E4%B8%87%E9%87%8C%E9%A9%AC%E5%AE%98%E6%96%B9%E6%97%97%E8%88%B0%E5%BA%97%3A%E6%8E%A8%E5%B9%BF; uc1=cookie14=UoYcCoJCtZ6mUg%3D%3D&cookie21=UtASsssmfufd; csg=7d17ab64; _cc_=V32FPkk%2Fhw%3D%3D; cancelledSubSites=empty; skt=214c26d846e4ece2; cna=8+iAHxeojXcCAXjsc5Mt+BAV; v=0; XSRF-TOKEN=a4816e90-82aa-4743-b438-67e826b8ebbe; datawar_version=new; mtop_partitioned_detect=1; _m_h5_tk=c1140ed9be58a574cf0740ca0fad2f9c_1729340693031; _m_h5_tk_enc=2a93813f4e75d7928cc79cc6bc9db5d7; _euacm_ac_rs_sid_=67090549; JSESSIONID=3DBCB84C04569B30741EF0263731963E; tfstk=gbRSfuVwPHdqd3wyBX3VCcGDfR5IVHGN9y_pSeFzJ_CRvXKpc9FEE_WCOnI2ag8Pww1BSHZrr95ROMTMVJ8PY8-XJet_aL-eYzvDbFFyaYfUO_fh9coZ_fzkr6fKIj10GzfA-NE-TgF-MUjmccen_f8kyz7-7Ehwagr3NGjd9TBLkZIcSMQpvTeYHibhJuQd2qTAmie8ygBRHsQP-7Cd9HLxlwcOeP_IFgYSohIbYoEQeUSb9WdfkDj9PrNGyQ_5FGLJNLJkGlX5XUIb9cAVGNjA5In34MAXkQQHDjP5OEQBf_pjD7tBydxhW3hb2a9J5FWXtcFCoKKl3a9jJ-IJWgfRcB03tgpyJBWBwcUF2QxyGOA3VmSeQERRhhn4GHXBedCJOcGA4FVNfUSadr6gOZsZlqw3KbGMRi1XJjWceZb53qgb2pXRoZ_mlqw3KTQcPagjluph.; isg=BOrqXtnOebYXhfQ1b9KgdzAAO1aMW2618WeuUnSgRz1Qp45hXO-pxEuRN9O7V-ZN'}
548
-
549
- path = '/Users/xigua/Downloads'
550
- filename = 'test'
551
- r = RequestData()
552
- r.is_json_file = False
553
- r.hd_sp(
554
- date=date,
555
- url=url,
556
- headers=headers,
557
- cookies=cookies,
558
- path=path,
559
- filename=filename,
560
- pages = pages,
561
- )
562
- # print(r.datas)
563
- df = pd.DataFrame(r.datas)
564
- df.to_csv(os.path.join(path, 'test.csv'), index=False, header=True, encoding='utf-8_sig')
565
-
566
-
567
- def company_run(service_databases=[]):
568
- # if platform.system() != 'Windows':
569
- # return
570
- # if socket.gethostname() != 'company':
571
- # return
572
- while True:
573
- r = RequestData()
574
- r.is_json_file = False
575
-
576
- my_data_list = [
577
- # r.ys_ll_data(), # 双 11预售实时流量分析
578
- # r.qxg_hx_data(), # 抢先购 预热期核心指标
579
- r.qxg_ll() # 抢先购 流量来源
580
- ]
581
-
582
- results = []
583
- for my_data in my_data_list:
584
- db_name, table_name, df = my_data
585
- if len(df) == 0:
586
- print(f'{db_name} -> {table_name} has no data')
587
- continue
588
- # print(df)
589
- results.append([db_name, table_name, df])
590
-
591
- if not service_databases:
592
- return
593
- for dt in service_databases:
594
- for service_name, database in dt.items():
595
- username, password, host, port = get_myconf.select_config_values(
596
- target_service=service_name,
597
- database=database,
598
- )
599
- m = mysql.MysqlUpload(
600
- username=username,
601
- password=password,
602
- host=host,
603
- port=port,
604
- )
605
- for result in results:
606
- db_name, table_name, df = result
607
- m.df_to_mysql(
608
- df=df,
609
- db_name=db_name,
610
- table_name=table_name,
611
- move_insert=False, # 先删除,再插入
612
- df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
613
- drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
614
- count=None,
615
- filename=None, # 用来追踪处理进度
616
- )
617
- now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S ")
618
- print(f'{now} {db_name} -> {table_name}: 已入库')
619
-
620
- time.sleep(random.randint(1500, 2000))
621
-
622
-
623
- if __name__ == '__main__':
624
- company_run(service_databases=[{'company': 'mysql'}])
File without changes