mdbq 3.3.2__py3-none-any.whl → 3.3.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -25,26 +25,54 @@ import traceback
25
25
 
26
26
  """
27
27
  error_file = os.path.join(set_support.SetSupport(dirname='support').dirname, 'error.log')
28
- username, password, host, port, service_database = None, None, None, None, None,
29
- if socket.gethostname() in ['xigua_lx', 'xigua1', 'MacBookPro']:
28
+ m_engine = mysql.MysqlUpload(username='', password='', host='', port=0, charset='utf8mb4')
29
+ company_engine = mysql.MysqlUpload(username='', password='', host='', port=0, charset='utf8mb4')
30
+
31
+ if socket.gethostname() == 'company' or socket.gethostname() == 'Mac2.local':
30
32
  conf = myconfig.main()
31
- conf_data = conf['Windows']['xigua_lx']['mysql']['local']
33
+ conf_data = conf['Windows']['xigua_lx']['mysql']['remoto']
32
34
  username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
33
- service_database = {'xigua_lx': 'mysql'}
34
- elif socket.gethostname() in ['company', 'Mac2.local']:
35
- conf = myconfig.main()
35
+ m_engine = mysql.MysqlUpload(
36
+ username=username,
37
+ password=password,
38
+ host=host,
39
+ port=port,
40
+ charset='utf8mb4'
41
+ )
36
42
  conf_data = conf['Windows']['company']['mysql']['local']
37
43
  username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
38
- service_database = {'company': 'mysql'}
39
- if not username:
40
- print(f'找不到主机:')
41
- m_engine = mysql.MysqlUpload(
42
- username=username,
43
- password=password,
44
- host=host,
45
- port=port,
46
- charset='utf8mb4'
47
- )
44
+ company_engine = mysql.MysqlUpload(
45
+ username=username,
46
+ password=password,
47
+ host=host,
48
+ port=port,
49
+ charset='utf8mb4'
50
+ )
51
+ targe_host = 'company'
52
+
53
+ else:
54
+ conf = myconfig.main()
55
+
56
+ conf_data = conf['Windows']['company']['mysql']['remoto']
57
+ username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
58
+ company_engine = mysql.MysqlUpload(
59
+ username=username,
60
+ password=password,
61
+ host=host,
62
+ port=port,
63
+ charset='utf8mb4'
64
+ )
65
+
66
+ conf_data = conf['Windows']['xigua_lx']['mysql']['local']
67
+ username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
68
+ m_engine = mysql.MysqlUpload(
69
+ username=username,
70
+ password=password,
71
+ host=host,
72
+ port=port,
73
+ charset='utf8mb4'
74
+ )
75
+ targe_host = 'xigua_lx'
48
76
 
49
77
 
50
78
  class MysqlDatasQuery:
@@ -200,6 +228,19 @@ class MysqlDatasQuery:
200
228
  reset_id=True, # 是否重置自增列
201
229
  set_typ=set_typ,
202
230
  )
231
+ company_engine.df_to_mysql(
232
+ df=df,
233
+ db_name=db_name,
234
+ table_name=table_name,
235
+ # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
236
+ move_insert=True, # 先删除,再插入
237
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
238
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
239
+ count=None,
240
+ filename=None, # 用来追踪处理进度
241
+ reset_id=True, # 是否重置自增列
242
+ set_typ=set_typ,
243
+ )
203
244
 
204
245
  # df_pic:商品排序索引表, 给 powerbi 中的主推款排序用的,(从上月1号到今天的总花费进行排序)
205
246
  today = datetime.date.today()
@@ -248,6 +289,19 @@ class MysqlDatasQuery:
248
289
  reset_id=False, # 是否重置自增列
249
290
  set_typ=set_typ,
250
291
  )
292
+ company_engine.df_to_mysql(
293
+ df=df_pic,
294
+ db_name='属性设置3',
295
+ table_name='商品索引表_主推排序调用',
296
+ icm_update=['商品id'], # 增量更新, 在聚合数据中使用,其他不要用
297
+ move_insert=False, # 先删除,再插入
298
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
299
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
300
+ count=None,
301
+ filename=None, # 用来追踪处理进度
302
+ reset_id=False, # 是否重置自增列
303
+ set_typ=set_typ,
304
+ )
251
305
  return True
252
306
 
253
307
  @try_except
@@ -340,6 +394,19 @@ class MysqlDatasQuery:
340
394
  reset_id=True, # 是否重置自增列
341
395
  set_typ=set_typ,
342
396
  )
397
+ company_engine.df_to_mysql(
398
+ df=df,
399
+ db_name=db_name,
400
+ table_name=table_name,
401
+ # icm_update=['日期', '宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
402
+ move_insert=True, # 先删除,再插入
403
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
404
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
405
+ count=None,
406
+ filename=None, # 用来追踪处理进度
407
+ reset_id=True, # 是否重置自增列
408
+ set_typ=set_typ,
409
+ )
343
410
  return True
344
411
 
345
412
  @try_except
@@ -530,6 +597,19 @@ class MysqlDatasQuery:
530
597
  reset_id=True, # 是否重置自增列
531
598
  set_typ=set_typ,
532
599
  )
600
+ company_engine.df_to_mysql(
601
+ df=df,
602
+ db_name=db_name,
603
+ table_name=table_name,
604
+ # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '人群名字'], # 增量更新, 在聚合数据中使用,其他不要用
605
+ move_insert=True, # 先删除,再插入
606
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
607
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
608
+ count=None,
609
+ filename=None, # 用来追踪处理进度
610
+ reset_id=True, # 是否重置自增列
611
+ set_typ=set_typ,
612
+ )
533
613
  return True
534
614
 
535
615
  @try_except
@@ -666,6 +746,19 @@ class MysqlDatasQuery:
666
746
  reset_id=True, # 是否重置自增列
667
747
  set_typ=set_typ,
668
748
  )
749
+ company_engine.df_to_mysql(
750
+ df=df,
751
+ db_name=db_name,
752
+ table_name=table_name,
753
+ # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '词类型', '词名字_词包名字',], # 增量更新, 在聚合数据中使用,其他不要用
754
+ move_insert=True, # 先删除,再插入
755
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
756
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
757
+ count=None,
758
+ filename=None, # 用来追踪处理进度
759
+ reset_id=True, # 是否重置自增列
760
+ set_typ=set_typ,
761
+ )
669
762
  return True
670
763
 
671
764
  @try_except
@@ -790,6 +883,19 @@ class MysqlDatasQuery:
790
883
  reset_id=True, # 是否重置自增列
791
884
  set_typ=set_typ,
792
885
  )
886
+ company_engine.df_to_mysql(
887
+ df=df,
888
+ db_name=db_name,
889
+ table_name=table_name,
890
+ # icm_update=['日期', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
891
+ move_insert=True, # 先删除,再插入
892
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
893
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
894
+ count=None,
895
+ filename=None, # 用来追踪处理进度
896
+ reset_id=True, # 是否重置自增列
897
+ set_typ=set_typ,
898
+ )
793
899
  return True
794
900
 
795
901
  @try_except
@@ -903,6 +1009,19 @@ class MysqlDatasQuery:
903
1009
  reset_id=True, # 是否重置自增列
904
1010
  set_typ=set_typ,
905
1011
  )
1012
+ company_engine.df_to_mysql(
1013
+ df=df,
1014
+ db_name=db_name,
1015
+ table_name=table_name,
1016
+ # icm_update=['日期', '报表类型', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
1017
+ move_insert=True, # 先删除,再插入
1018
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1019
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1020
+ count=None,
1021
+ filename=None, # 用来追踪处理进度
1022
+ reset_id=True, # 是否重置自增列
1023
+ set_typ=set_typ,
1024
+ )
906
1025
  return True
907
1026
 
908
1027
  @try_except
@@ -960,6 +1079,19 @@ class MysqlDatasQuery:
960
1079
  reset_id=True, # 是否重置自增列
961
1080
  set_typ=set_typ,
962
1081
  )
1082
+ company_engine.df_to_mysql(
1083
+ df=df,
1084
+ db_name=db_name,
1085
+ table_name=table_name,
1086
+ icm_update=['宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
1087
+ move_insert=False, # 先删除,再插入
1088
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1089
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1090
+ count=None,
1091
+ filename=None, # 用来追踪处理进度
1092
+ reset_id=True, # 是否重置自增列
1093
+ set_typ=set_typ,
1094
+ )
963
1095
  return True
964
1096
 
965
1097
  @try_except
@@ -1017,6 +1149,19 @@ class MysqlDatasQuery:
1017
1149
  reset_id=False, # 是否重置自增列
1018
1150
  set_typ=set_typ,
1019
1151
  )
1152
+ company_engine.df_to_mysql(
1153
+ df=df,
1154
+ db_name=db_name,
1155
+ table_name=table_name,
1156
+ icm_update=['商品id'], # 增量更新, 在聚合数据中使用,其他不要用
1157
+ move_insert=False, # 先删除,再插入
1158
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1159
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1160
+ count=None,
1161
+ filename=None, # 用来追踪处理进度
1162
+ reset_id=False, # 是否重置自增列
1163
+ set_typ=set_typ,
1164
+ )
1020
1165
  return True
1021
1166
 
1022
1167
  # @try_except
@@ -1125,6 +1270,19 @@ class MysqlDatasQuery:
1125
1270
  reset_id=True, # 是否重置自增列
1126
1271
  set_typ=set_typ,
1127
1272
  )
1273
+ company_engine.df_to_mysql(
1274
+ df=df,
1275
+ db_name=db_name,
1276
+ table_name=table_name,
1277
+ # icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1278
+ move_insert=True, # 先删除,再插入
1279
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1280
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1281
+ count=None,
1282
+ filename=None, # 用来追踪处理进度
1283
+ reset_id=True, # 是否重置自增列
1284
+ set_typ=set_typ,
1285
+ )
1128
1286
  return True
1129
1287
 
1130
1288
  @try_except
@@ -1172,6 +1330,19 @@ class MysqlDatasQuery:
1172
1330
  reset_id=False, # 是否重置自增列
1173
1331
  set_typ=set_typ,
1174
1332
  )
1333
+ company_engine.df_to_mysql(
1334
+ df=df,
1335
+ db_name=db_name,
1336
+ table_name=table_name,
1337
+ icm_update=['款号'], # 增量更新, 在聚合数据中使用,其他不要用
1338
+ move_insert=False, # 先删除,再插入
1339
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1340
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1341
+ count=None,
1342
+ filename=None, # 用来追踪处理进度
1343
+ reset_id=False, # 是否重置自增列
1344
+ set_typ=set_typ,
1345
+ )
1175
1346
  return True
1176
1347
 
1177
1348
  # @try_except
@@ -1276,7 +1447,19 @@ class MysqlDatasQuery:
1276
1447
  filename=None, # 用来追踪处理进度
1277
1448
  reset_id=True, # 是否重置自增列
1278
1449
  set_typ=set_typ,
1279
-
1450
+ )
1451
+ company_engine.df_to_mysql(
1452
+ df=df,
1453
+ db_name=db_name,
1454
+ table_name=table_name,
1455
+ # icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
1456
+ move_insert=True, # 先删除,再插入
1457
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1458
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1459
+ count=None,
1460
+ filename=None, # 用来追踪处理进度
1461
+ reset_id=True, # 是否重置自增列
1462
+ set_typ=set_typ,
1280
1463
  )
1281
1464
 
1282
1465
  # # 按照 spu 聚合
@@ -1310,8 +1493,20 @@ class MysqlDatasQuery:
1310
1493
  # count=None,
1311
1494
  # filename=None, # 用来追踪处理进度
1312
1495
  # reset_id=True, # 是否重置自增列
1313
- # set_typ=set_typ,
1314
- #
1496
+ # set_typ=set_typ
1497
+ # )
1498
+ # company_engine.df_to_mysql(
1499
+ # df=df,
1500
+ # db_name=db_name,
1501
+ # table_name='京东_京准通_按spu',
1502
+ # # icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
1503
+ # move_insert=True, # 先删除,再插入
1504
+ # df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1505
+ # drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1506
+ # count=None,
1507
+ # filename=None, # 用来追踪处理进度
1508
+ # reset_id=True, # 是否重置自增列
1509
+ # set_typ=set_typ
1315
1510
  # )
1316
1511
 
1317
1512
  return True
@@ -1379,8 +1574,20 @@ class MysqlDatasQuery:
1379
1574
  count=None,
1380
1575
  filename=None, # 用来追踪处理进度
1381
1576
  reset_id=True, # 是否重置自增列
1382
- set_typ=set_typ,
1383
-
1577
+ set_typ=set_typ
1578
+ )
1579
+ company_engine.df_to_mysql(
1580
+ df=df,
1581
+ db_name=db_name,
1582
+ table_name=table_name,
1583
+ # icm_update=['日期', '产品线', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
1584
+ move_insert=True, # 先删除,再插入
1585
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1586
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1587
+ count=None,
1588
+ filename=None, # 用来追踪处理进度
1589
+ reset_id=True, # 是否重置自增列
1590
+ set_typ=set_typ
1384
1591
  )
1385
1592
  return True
1386
1593
 
@@ -1481,8 +1688,20 @@ class MysqlDatasQuery:
1481
1688
  count=None,
1482
1689
  filename=None, # 用来追踪处理进度
1483
1690
  reset_id=True, # 是否重置自增列
1484
- set_typ=set_typ,
1485
-
1691
+ set_typ=set_typ
1692
+ )
1693
+ company_engine.df_to_mysql(
1694
+ df=df,
1695
+ db_name=db_name,
1696
+ table_name=table_name,
1697
+ # icm_update=['日期', '产品线', '搜索词', '关键词', '展现数', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
1698
+ move_insert=True, # 先删除,再插入
1699
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1700
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1701
+ count=None,
1702
+ filename=None, # 用来追踪处理进度
1703
+ reset_id=True, # 是否重置自增列
1704
+ set_typ=set_typ
1486
1705
  )
1487
1706
  return True
1488
1707
 
@@ -1558,6 +1777,19 @@ class MysqlDatasQuery:
1558
1777
  reset_id=True, # 是否重置自增列
1559
1778
  set_typ=set_typ,
1560
1779
  )
1780
+ company_engine.df_to_mysql(
1781
+ df=df,
1782
+ db_name=db_name,
1783
+ table_name=table_name,
1784
+ # icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
1785
+ move_insert=True, # 先删除,再插入
1786
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1787
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1788
+ count=None,
1789
+ filename=None, # 用来追踪处理进度
1790
+ reset_id=True, # 是否重置自增列
1791
+ set_typ=set_typ,
1792
+ )
1561
1793
  return True
1562
1794
 
1563
1795
  @try_except
@@ -1622,8 +1854,20 @@ class MysqlDatasQuery:
1622
1854
  count=None,
1623
1855
  filename=None, # 用来追踪处理进度
1624
1856
  reset_id=True, # 是否重置自增列
1625
- set_typ=set_typ,
1626
-
1857
+ set_typ=set_typ
1858
+ )
1859
+ company_engine.df_to_mysql(
1860
+ df=df,
1861
+ db_name=db_name,
1862
+ table_name=table_name,
1863
+ # icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
1864
+ move_insert=True, # 先删除,再插入
1865
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1866
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1867
+ count=None,
1868
+ filename=None, # 用来追踪处理进度
1869
+ reset_id=True, # 是否重置自增列
1870
+ set_typ=set_typ
1627
1871
  )
1628
1872
  return True
1629
1873
 
@@ -1708,6 +1952,19 @@ class MysqlDatasQuery:
1708
1952
  reset_id=True, # 是否重置自增列
1709
1953
  set_typ=set_typ,
1710
1954
  )
1955
+ company_engine.df_to_mysql(
1956
+ df=df,
1957
+ db_name=db_name,
1958
+ table_name=table_name,
1959
+ # icm_update=['日期', '店铺名称', '词类型', '搜索词'], # 增量更新, 在聚合数据中使用,其他不要用
1960
+ move_insert=True, # 先删除,再插入
1961
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1962
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1963
+ count=None,
1964
+ filename=None, # 用来追踪处理进度
1965
+ reset_id=True, # 是否重置自增列
1966
+ set_typ=set_typ,
1967
+ )
1711
1968
  return True
1712
1969
 
1713
1970
  @try_except
@@ -1877,6 +2134,15 @@ class MysqlDatasQuery:
1877
2134
  main_key=None, # 指定索引列, 通常用日期列,默认会设置日期为索引
1878
2135
  set_typ=set_typ, # 指定数据类型
1879
2136
  )
2137
+ company_engine.dict_to_mysql(
2138
+ db_name=db_name,
2139
+ table_name=table_name,
2140
+ dict_data=new_dict,
2141
+ unique_main_key=None,
2142
+ icm_update=['场次id'], # 唯一组合键
2143
+ main_key=None, # 指定索引列, 通常用日期列,默认会设置日期为索引
2144
+ set_typ=set_typ, # 指定数据类型
2145
+ )
1880
2146
  return True
1881
2147
 
1882
2148
  # @try_except
@@ -2206,8 +2472,20 @@ class MysqlDatasQuery:
2206
2472
  count=None,
2207
2473
  filename=None, # 用来追踪处理进度
2208
2474
  reset_id=True, # 是否重置自增列
2209
- set_typ=set_typ,
2210
-
2475
+ set_typ=set_typ
2476
+ )
2477
+ company_engine.df_to_mysql(
2478
+ df=df,
2479
+ db_name=db_name,
2480
+ table_name=table_name,
2481
+ # icm_update=['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量'], # 增量更新, 在聚合数据中使用,其他不要用
2482
+ move_insert=True, # 先删除,再插入
2483
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2484
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2485
+ count=None,
2486
+ filename=None, # 用来追踪处理进度
2487
+ reset_id=True, # 是否重置自增列
2488
+ set_typ=set_typ
2211
2489
  )
2212
2490
  return True
2213
2491
 
@@ -2312,6 +2590,14 @@ class MysqlDatasQuery:
2312
2590
  # unique_main_key=None,
2313
2591
  # set_typ=set_typ,
2314
2592
  # )
2593
+ # company_engine.dict_to_mysql(
2594
+ # db_name=db_name,
2595
+ # table_name=table_name,
2596
+ # dict_data=new_dict,
2597
+ # icm_update=['日期', '店铺名称', 'spu_id', '商品款号'],
2598
+ # unique_main_key=None,
2599
+ # set_typ=set_typ,
2600
+ # )
2315
2601
  m_engine.df_to_mysql(
2316
2602
  df=df,
2317
2603
  db_name=db_name,
@@ -2323,8 +2609,20 @@ class MysqlDatasQuery:
2323
2609
  count=None,
2324
2610
  filename=None, # 用来追踪处理进度
2325
2611
  reset_id=True, # 是否重置自增列
2326
- set_typ=set_typ,
2327
-
2612
+ set_typ=set_typ
2613
+ )
2614
+ company_engine.df_to_mysql(
2615
+ df=df,
2616
+ db_name=db_name,
2617
+ table_name=table_name,
2618
+ icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
2619
+ move_insert=True, # 先删除,再插入
2620
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2621
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2622
+ count=None,
2623
+ filename=None, # 用来追踪处理进度
2624
+ reset_id=True, # 是否重置自增列
2625
+ set_typ=set_typ
2328
2626
  )
2329
2627
  return True
2330
2628
 
@@ -2376,8 +2674,20 @@ class MysqlDatasQuery:
2376
2674
  count=None,
2377
2675
  filename=None, # 用来追踪处理进度
2378
2676
  reset_id=True, # 是否重置自增列
2379
- set_typ=set_typ,
2380
-
2677
+ set_typ=set_typ
2678
+ )
2679
+ company_engine.df_to_mysql(
2680
+ df=df,
2681
+ db_name=db_name,
2682
+ table_name=table_name,
2683
+ # icm_update=['日期', '人群类型', '店铺名称', '人群规模', '广告投入金额'], # 增量更新, 在聚合数据中使用,其他不要用
2684
+ move_insert=True, # 先删除,再插入
2685
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2686
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2687
+ count=None,
2688
+ filename=None, # 用来追踪处理进度
2689
+ reset_id=True, # 是否重置自增列
2690
+ set_typ=set_typ
2381
2691
  )
2382
2692
  return True
2383
2693
 
@@ -2491,6 +2801,19 @@ class MysqlDatasQuery:
2491
2801
  reset_id=True, # 是否重置自增列
2492
2802
  set_typ=set_typ,
2493
2803
  )
2804
+ company_engine.df_to_mysql(
2805
+ df=df,
2806
+ db_name=db_name,
2807
+ table_name=table_name,
2808
+ icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
2809
+ move_insert=True, # 先删除,再插入
2810
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2811
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2812
+ count=None,
2813
+ filename=None, # 用来追踪处理进度
2814
+ reset_id=True, # 是否重置自增列
2815
+ set_typ=set_typ,
2816
+ )
2494
2817
  return True
2495
2818
 
2496
2819
  @try_except
@@ -2902,6 +3225,19 @@ class MysqlDatasQuery:
2902
3225
  reset_id=True, # 是否重置自增列
2903
3226
  set_typ=set_typ,
2904
3227
  )
3228
+ company_engine.df_to_mysql(
3229
+ df=df,
3230
+ db_name=db_name,
3231
+ table_name=table_name,
3232
+ icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3233
+ move_insert=True, # 先删除,再插入
3234
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3235
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3236
+ count=None,
3237
+ filename=None, # 用来追踪处理进度
3238
+ reset_id=True, # 是否重置自增列
3239
+ set_typ=set_typ,
3240
+ )
2905
3241
  return True
2906
3242
 
2907
3243
  # @try_except
@@ -3012,6 +3348,19 @@ class MysqlDatasQuery:
3012
3348
  reset_id=True, # 是否重置自增列
3013
3349
  set_typ=set_typ,
3014
3350
  )
3351
+ company_engine.df_to_mysql(
3352
+ df=df,
3353
+ db_name=db_name,
3354
+ table_name=table_name,
3355
+ icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3356
+ move_insert=True, # 先删除,再插入
3357
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3358
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3359
+ count=None,
3360
+ filename=None, # 用来追踪处理进度
3361
+ reset_id=True, # 是否重置自增列
3362
+ set_typ=set_typ,
3363
+ )
3015
3364
  return True
3016
3365
 
3017
3366
  # @try_except
@@ -3083,6 +3432,19 @@ class MysqlDatasQuery:
3083
3432
  reset_id=True, # 是否重置自增列
3084
3433
  set_typ=set_typ,
3085
3434
  )
3435
+ company_engine.df_to_mysql(
3436
+ df=df,
3437
+ db_name=db_name,
3438
+ table_name=table_name,
3439
+ icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
3440
+ move_insert=True, # 先删除,再插入
3441
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
3442
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3443
+ count=None,
3444
+ filename=None, # 用来追踪处理进度
3445
+ reset_id=True, # 是否重置自增列
3446
+ set_typ=set_typ,
3447
+ )
3086
3448
  return True
3087
3449
 
3088
3450
 
mdbq/spider/aikucun.py CHANGED
@@ -47,23 +47,55 @@ else:
47
47
  Share_Path = str(pathlib.Path('/Volumes/时尚事业部/01.运营部/天猫报表')) # 共享文件根目录
48
48
  Source_Path = str(pathlib.Path(Data_Path, '原始文件2'))
49
49
  upload_path = os.path.join(D_PATH, '数据上传中心') # 此目录位于下载文件夹
50
+
51
+ m_engine = mysql.MysqlUpload(username='', password='', host='', port=0, charset='utf8mb4')
52
+ company_engine = mysql.MysqlUpload(username='', password='', host='', port=0, charset='utf8mb4')
53
+
50
54
  if socket.gethostname() == 'company' or socket.gethostname() == 'Mac2.local':
51
55
  conf = myconfig.main()
56
+ conf_data = conf['Windows']['xigua_lx']['mysql']['remoto']
57
+ username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
58
+ m_engine = mysql.MysqlUpload(
59
+ username=username,
60
+ password=password,
61
+ host=host,
62
+ port=port,
63
+ charset='utf8mb4'
64
+ )
52
65
  conf_data = conf['Windows']['company']['mysql']['local']
53
- username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data[
54
- 'port']
66
+ username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
67
+ company_engine = mysql.MysqlUpload(
68
+ username=username,
69
+ password=password,
70
+ host=host,
71
+ port=port,
72
+ charset='utf8mb4'
73
+ )
74
+ targe_host = 'company'
75
+
55
76
  else:
56
77
  conf = myconfig.main()
78
+
79
+ conf_data = conf['Windows']['company']['mysql']['remoto']
80
+ username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
81
+ company_engine = mysql.MysqlUpload(
82
+ username=username,
83
+ password=password,
84
+ host=host,
85
+ port=port,
86
+ charset='utf8mb4'
87
+ )
88
+
57
89
  conf_data = conf['Windows']['xigua_lx']['mysql']['local']
58
- username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data[
59
- 'port']
60
- m_engine = mysql.MysqlUpload(
61
- username=username,
62
- password=password,
63
- host=host,
64
- port=port,
65
- charset='utf8mb4'
66
- )
90
+ username, password, host, port = conf_data['username'], conf_data['password'], conf_data['host'], conf_data['port']
91
+ m_engine = mysql.MysqlUpload(
92
+ username=username,
93
+ password=password,
94
+ host=host,
95
+ port=port,
96
+ charset='utf8mb4'
97
+ )
98
+ targe_host = 'xigua_lx'
67
99
 
68
100
 
69
101
  def get_cookie_aikucun():
@@ -382,6 +414,14 @@ class AikuCun:
382
414
  unique_main_key=None,
383
415
  set_typ=set_typ,
384
416
  )
417
+ company_engine.dict_to_mysql(
418
+ db_name='爱库存2',
419
+ table_name='商品spu榜单',
420
+ dict_data=new_dict,
421
+ icm_update=['日期', '店铺名称', 'spu_id', '商品款号'],
422
+ unique_main_key=None,
423
+ set_typ=set_typ,
424
+ )
385
425
 
386
426
  # m_engine.df_to_mysql(
387
427
  # df=df,
@@ -396,6 +436,19 @@ class AikuCun:
396
436
  # reset_id=False, # 是否重置自增列
397
437
  # set_typ=set_typ,
398
438
  # )
439
+ # company_engine.df_to_mysql(
440
+ # df=df,
441
+ # db_name='爱库存2',
442
+ # table_name='商品spu榜单',
443
+ # icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
444
+ # move_insert=False, # 先删除,再插入
445
+ # df_sql=True, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
446
+ # drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
447
+ # count=None,
448
+ # filename=None, # 用来追踪处理进度
449
+ # reset_id=False, # 是否重置自增列
450
+ # set_typ=set_typ,
451
+ # )
399
452
 
400
453
  new_name = f'爱库存_商品榜单_spu_{date}_{date}.csv'
401
454
  df.to_csv(os.path.join(root, new_name), encoding='utf-8_sig', index=False)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.3.2
3
+ Version: 3.3.3
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -5,7 +5,7 @@ mdbq/aggregation/aggregation.py,sha256=-yzApnlqSN2L0E1YMu5ml-W827qpKQvWPCOI7jj2k
5
5
  mdbq/aggregation/df_types.py,sha256=U9i3q2eRPTDY8qAPTw7irzu-Tlg4CIySW9uYro81wdk,8125
6
6
  mdbq/aggregation/mysql_types.py,sha256=YTGyrF9vcRgfkQbpT-e-JdJ7c7VF1dDHgyx9YZRES8w,10934
7
7
  mdbq/aggregation/optimize_data.py,sha256=RXIv7cACCgYyehAxMjUYi_S7rVyjIwXKWMaM3nduGtA,3068
8
- mdbq/aggregation/query_data.py,sha256=CM3qY2yCeYhtZ58U5lVWIQjDqlJSSJZFs5V86dC4VKo,148479
8
+ mdbq/aggregation/query_data.py,sha256=4C9BmMUV4x1YvezIySO5Nh8tqGqg1z4GVnuYDGU5OJs,167595
9
9
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
10
10
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
11
11
  mdbq/clean/__init__.py,sha256=A1d6x3L27j4NtLgiFV5TANwEkLuaDfPHDQNrPBbNWtU,41
@@ -43,8 +43,8 @@ mdbq/pbix/refresh_all_old.py,sha256=_pq3WSQ728GPtEG5pfsZI2uTJhU8D6ra-htIk1JXYzw,
43
43
  mdbq/req_post/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
44
44
  mdbq/req_post/req_tb.py,sha256=qg7pet73IgKGmCwxaeUyImJIoeK_pBQT9BBKD7fkBNg,36160
45
45
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
46
- mdbq/spider/aikucun.py,sha256=yG0wqvKKqAsx_OQXAy-wAJF_DPITL3r_S-9txb5bnHk,22436
47
- mdbq-3.3.2.dist-info/METADATA,sha256=I4qUUWuBiywfwZwIlLGC1fxlIZGmq46nLGLcluAV3kM,243
48
- mdbq-3.3.2.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
49
- mdbq-3.3.2.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
50
- mdbq-3.3.2.dist-info/RECORD,,
46
+ mdbq/spider/aikucun.py,sha256=BKVa0xbTkyhIH5kQgOdyPDtwFPScbMNAFYup_-fFF9Y,24809
47
+ mdbq-3.3.3.dist-info/METADATA,sha256=2_AvXdqYGWMuln2wfqXfLKddw2h8Sbr49mK1UjEiiVU,243
48
+ mdbq-3.3.3.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
49
+ mdbq-3.3.3.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
50
+ mdbq-3.3.3.dist-info/RECORD,,
File without changes