mdbq 3.2.9__py3-none-any.whl → 3.2.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1174,12 +1174,53 @@ def upload_dir(path, db_name, collection_name, json_path=None):
1174
1174
  if '更新时间' not in df.columns.tolist():
1175
1175
  df['更新时间'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
1176
1176
 
1177
+ # set_typ = {
1178
+ # '日期': 'date',
1179
+ # '店铺名称': 'varchar(100)',
1180
+ # 'spu_id': 'varchar(100)',
1181
+ # '图片': 'varchar(255)',
1182
+ # '序号': 'smallint',
1183
+ # '商品名称': 'varchar(255)',
1184
+ # '商品款号': 'varchar(255)',
1185
+ # '一级类目名称': 'varchar(255)',
1186
+ # '二级类目名称': 'varchar(255)',
1187
+ # '三级类目名称': 'varchar(255)',
1188
+ # '数据更新时间': 'timestamp',
1189
+ # '更新时间': 'timestamp',
1190
+ # }
1191
+ # new_dict = {
1192
+ # '日期': '',
1193
+ # '店铺名称': '',
1194
+ # '序号': '',
1195
+ # '商品名称': '',
1196
+ # 'spu_id': '',
1197
+ # '商品款号': '',
1198
+ # '一级类目名称': '',
1199
+ # '二级类目名称': '',
1200
+ # '三级类目名称': '',
1201
+ # '访客量': '',
1202
+ # '浏览量': '',
1203
+ # '下单gmv': '',
1204
+ # '成交gmv': '',
1205
+ # '支付人数_成交': '',
1206
+ # }
1207
+ # for dict_data in df.to_dict(orient='records'):
1208
+ # new_dict.update(dict_data)
1209
+ # m.dict_to_mysql(
1210
+ # db_name=db_name,
1211
+ # table_name=collection_name,
1212
+ # dict_data=new_dict,
1213
+ # # icm_update=['日期', '店铺名称', 'spu_id', '商品款号'],
1214
+ # unique_main_key=None,
1215
+ # set_typ=set_typ,
1216
+ # )
1177
1217
  m.df_to_mysql(df=df, db_name=db_name, table_name=collection_name,
1178
1218
  move_insert=False, # 先删除,再插入
1179
1219
  df_sql = True,
1180
1220
  drop_duplicates=False,
1181
1221
  count=f'{i}/{count}',
1182
1222
  filename=name,
1223
+ set_typ={},
1183
1224
  )
1184
1225
  # nas.df_to_mysql(df=df, db_name=db_name, table_name=collection_name, drop_duplicates=True,)
1185
1226
 
@@ -2288,46 +2288,46 @@ class MysqlDatasQuery:
2288
2288
  max_date = df['日期'].max()
2289
2289
  now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
2290
2290
  print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
2291
- new_dict = {
2292
- '日期': '',
2293
- '店铺名称': '',
2294
- '序号': '',
2295
- '商品名称': '',
2296
- 'spu_id': '',
2297
- '商品款号': '',
2298
- '一级类目名称': '',
2299
- '二级类目名称': '',
2300
- '三级类目名称': '',
2301
- '访客量': '',
2302
- '浏览量': '',
2303
- '下单gmv': '',
2304
- '成交gmv': '',
2305
- '支付人数_成交': '',
2306
- }
2307
- for dict_data in df.to_dict(orient='records'):
2308
- new_dict.update(dict_data)
2309
- m_engine.dict_to_mysql(
2310
- db_name='爱库存2',
2311
- table_name='商品spu榜单',
2312
- dict_data=new_dict,
2313
- icm_update=['日期', '店铺名称', 'spu_id', '商品款号'],
2314
- unique_main_key=None,
2315
- set_typ=set_typ,
2316
- )
2317
- # m_engine.df_to_mysql(
2318
- # df=df,
2319
- # db_name=db_name,
2320
- # table_name=table_name,
2321
- # icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
2322
- # move_insert=True, # 先删除,再插入
2323
- # df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2324
- # drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2325
- # count=None,
2326
- # filename=None, # 用来追踪处理进度
2327
- # reset_id=False, # 是否重置自增列
2328
- # set_typ=set_typ,
2329
- #
2330
- # )
2291
+ # new_dict = {
2292
+ # '日期': '',
2293
+ # '店铺名称': '',
2294
+ # '序号': '',
2295
+ # '商品名称': '',
2296
+ # 'spu_id': '',
2297
+ # '商品款号': '',
2298
+ # '一级类目名称': '',
2299
+ # '二级类目名称': '',
2300
+ # '三级类目名称': '',
2301
+ # '访客量': '',
2302
+ # '浏览量': '',
2303
+ # '下单gmv': '',
2304
+ # '成交gmv': '',
2305
+ # '支付人数_成交': '',
2306
+ # }
2307
+ # for dict_data in df.to_dict(orient='records'):
2308
+ # new_dict.update(dict_data)
2309
+ # m_engine.dict_to_mysql(
2310
+ # db_name=db_name,
2311
+ # table_name=table_name,
2312
+ # dict_data=new_dict,
2313
+ # icm_update=['日期', '店铺名称', 'spu_id', '商品款号'],
2314
+ # unique_main_key=None,
2315
+ # set_typ=set_typ,
2316
+ # )
2317
+ m_engine.df_to_mysql(
2318
+ df=df,
2319
+ db_name=db_name,
2320
+ table_name=table_name,
2321
+ icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
2322
+ move_insert=True, # 先删除,再插入
2323
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
2324
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2325
+ count=None,
2326
+ filename=None, # 用来追踪处理进度
2327
+ reset_id=False, # 是否重置自增列
2328
+ set_typ=set_typ,
2329
+
2330
+ )
2331
2331
  return True
2332
2332
 
2333
2333
  def deeplink(self, db_name='聚合数据', table_name='达摩盘_deeplink人群洞察'):
@@ -3318,7 +3318,7 @@ if __name__ == '__main__':
3318
3318
  # 3. 清理聚合数据
3319
3319
  optimize_data.op_data(
3320
3320
  db_name_lists=['聚合数据'],
3321
- days=3650, # 清理聚合数据的日期长度
3321
+ days=100, # 清理聚合数据的日期长度
3322
3322
  is_mongo=False,
3323
3323
  is_mysql=True,
3324
3324
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.2.9
3
+ Version: 3.2.10
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -1,11 +1,11 @@
1
1
  mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
2
2
  mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
3
3
  mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
4
- mdbq/aggregation/aggregation.py,sha256=ygQYYbxTn7utNPgwiz6MmBSWlq5JrXB-2NU0V75b6Us,74640
4
+ mdbq/aggregation/aggregation.py,sha256=kdWeVjvUoWOZhidez0FyMtutIrPwnjLCY7USaQVNxRk,76336
5
5
  mdbq/aggregation/df_types.py,sha256=U9i3q2eRPTDY8qAPTw7irzu-Tlg4CIySW9uYro81wdk,8125
6
6
  mdbq/aggregation/mysql_types.py,sha256=YTGyrF9vcRgfkQbpT-e-JdJ7c7VF1dDHgyx9YZRES8w,10934
7
7
  mdbq/aggregation/optimize_data.py,sha256=RXIv7cACCgYyehAxMjUYi_S7rVyjIwXKWMaM3nduGtA,3068
8
- mdbq/aggregation/query_data.py,sha256=yU-PUMY5mTKAhGTH9yCe897MzSRme2toCJBqXaUrJUQ,148223
8
+ mdbq/aggregation/query_data.py,sha256=GbmvkRYEv_xg90vHp2FszjFZuMqO3ZPSEp6lZrnOrIE,148227
9
9
  mdbq/aggregation/query_data_bak.py,sha256=r1FU0C4zjXln7oVSrRkElh4Ehl-9mYhGcq57jLbViUA,104071
10
10
  mdbq/aggregation/query_data_bak20241124.py,sha256=oY95ZK3qt3Wx9pdZKZ5cvDh45Yi5yGj1kl8G6riumHA,144513
11
11
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
@@ -46,7 +46,7 @@ mdbq/req_post/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
46
46
  mdbq/req_post/req_tb.py,sha256=qg7pet73IgKGmCwxaeUyImJIoeK_pBQT9BBKD7fkBNg,36160
47
47
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
48
48
  mdbq/spider/aikucun.py,sha256=nIKKZOZbemKqcrikcrMmtksLgJjjzeU0I99teBgU1jE,22439
49
- mdbq-3.2.9.dist-info/METADATA,sha256=VVlPtpTiP4PO4M02keRDAf3m98dzf8_noBXsu_TV-L0,243
50
- mdbq-3.2.9.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
51
- mdbq-3.2.9.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
52
- mdbq-3.2.9.dist-info/RECORD,,
49
+ mdbq-3.2.10.dist-info/METADATA,sha256=l7LN00jP2XEWyB9qTPGKZIbV0Aucaa57dyB50mgImJU,244
50
+ mdbq-3.2.10.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
51
+ mdbq-3.2.10.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
52
+ mdbq-3.2.10.dist-info/RECORD,,
File without changes