mdbq 3.2.4__py3-none-any.whl → 3.2.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mdbq/aggregation/query_data.py +73 -49
- mdbq/aggregation/query_data_bak20241124.py +3229 -0
- mdbq/dataframe/converter.py +2 -1
- mdbq/mysql/mysql.py +5 -4
- {mdbq-3.2.4.dist-info → mdbq-3.2.6.dist-info}/METADATA +1 -1
- {mdbq-3.2.4.dist-info → mdbq-3.2.6.dist-info}/RECORD +8 -7
- {mdbq-3.2.4.dist-info → mdbq-3.2.6.dist-info}/WHEEL +1 -1
- {mdbq-3.2.4.dist-info → mdbq-3.2.6.dist-info}/top_level.txt +0 -0
mdbq/aggregation/query_data.py
CHANGED
@@ -3121,6 +3121,50 @@ def date_table():
|
|
3121
3121
|
)
|
3122
3122
|
|
3123
3123
|
|
3124
|
+
def query1(months=1, less_dict=[]):
|
3125
|
+
if months == 0:
|
3126
|
+
print(f'months 不建议为 0 ')
|
3127
|
+
return
|
3128
|
+
sdq = MysqlDatasQuery() # 实例化数据处理类
|
3129
|
+
sdq.months = months # 设置数据周期, 1 表示近 2 个月
|
3130
|
+
sdq.update_service = True # 调试时加,true: 将数据写入 mysql 服务器
|
3131
|
+
|
3132
|
+
sdq.tg_wxt(db_name='聚合数据', table_name='天猫_主体报表')
|
3133
|
+
sdq.syj(db_name='聚合数据', table_name='生意经_宝贝指标')
|
3134
|
+
sdq.idbm(db_name='聚合数据', table_name='商品id编码表')
|
3135
|
+
sdq.sp_picture(db_name='聚合数据', table_name='商品id图片对照表')
|
3136
|
+
sdq.sp_cost(db_name='聚合数据', table_name='商品成本')
|
3137
|
+
sdq.jdjzt(db_name='聚合数据', table_name='京东_京准通')
|
3138
|
+
sdq.jdqzyx(db_name='聚合数据', table_name='京东_京准通_全站营销')
|
3139
|
+
sdq.sku_sales(db_name='聚合数据', table_name='京东_sku_商品明细')
|
3140
|
+
sdq.spu_sales(db_name='聚合数据', table_name='京东_spu_商品明细')
|
3141
|
+
sdq.tg_cjzb(db_name='聚合数据', table_name='天猫_超级直播')
|
3142
|
+
sdq.pxb_zh(db_name='聚合数据', table_name='天猫_品销宝账户报表')
|
3143
|
+
sdq.zb_ccfx(db_name='聚合数据', table_name='生意参谋_直播场次分析')
|
3144
|
+
sdq.tg_by_day(db_name='聚合数据', table_name='多店推广场景_按日聚合')
|
3145
|
+
sdq.performance(bb_tg=True, db_name='聚合数据', table_name='_全店商品销售') # _全店商品销售
|
3146
|
+
sdq.performance(bb_tg=False, db_name='聚合数据', table_name='_推广商品销售') # _推广商品销售
|
3147
|
+
sdq.performance_jd(jd_tg=False, db_name='聚合数据', table_name='_京东_推广商品销售') # _推广商品销售
|
3148
|
+
sdq.performance_concat(bb_tg=False, db_name='聚合数据', table_name='天猫_推广汇总') # _推广商品销售
|
3149
|
+
|
3150
|
+
|
3151
|
+
def query2(months=1, less_dict=[]):
|
3152
|
+
if months == 0:
|
3153
|
+
print(f'months 不建议为 0 ')
|
3154
|
+
return
|
3155
|
+
sdq = MysqlDatasQuery() # 实例化数据处理类
|
3156
|
+
sdq.months = months # 设置数据周期, 1 表示近 2 个月
|
3157
|
+
sdq.update_service = True # 调试时加,true: 将数据写入 mysql 服务器
|
3158
|
+
sdq.dplyd(db_name='聚合数据', table_name='店铺流量来源构成')
|
3159
|
+
sdq.tg_rqbb(db_name='聚合数据', table_name='天猫_人群报表')
|
3160
|
+
sdq.tg_gjc(db_name='聚合数据', table_name='天猫_关键词报表')
|
3161
|
+
sdq.jd_gjc(db_name='聚合数据', table_name='京东_关键词报表')
|
3162
|
+
sdq.se_search(db_name='聚合数据', table_name='天猫店铺来源_手淘搜索')
|
3163
|
+
sdq.aikucun_bd_spu(db_name='聚合数据', table_name='爱库存_商品spu榜单')
|
3164
|
+
sdq.dmp_crowd(db_name='聚合数据', table_name='达摩盘_人群报表')
|
3165
|
+
sdq.deeplink(db_name='聚合数据', table_name='达摩盘_deeplink人群洞察')
|
3166
|
+
|
3167
|
+
|
3124
3168
|
def main(days=150, months=3):
|
3125
3169
|
"""
|
3126
3170
|
days: 清理聚合数据的日期长度
|
@@ -3159,8 +3203,19 @@ def main(days=150, months=3):
|
|
3159
3203
|
# future.result()
|
3160
3204
|
|
3161
3205
|
# 2. 数据聚合
|
3162
|
-
|
3163
|
-
|
3206
|
+
query_list = [query1, query2]
|
3207
|
+
# 使用 ThreadPoolExecutor 来并行运行
|
3208
|
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
3209
|
+
for func_query in query_list:
|
3210
|
+
future_to_function = {
|
3211
|
+
executor.submit(
|
3212
|
+
func_query,
|
3213
|
+
months=months,
|
3214
|
+
less_dict=[],
|
3215
|
+
),
|
3216
|
+
}
|
3217
|
+
# query_(months=months)
|
3218
|
+
time.sleep(10)
|
3164
3219
|
|
3165
3220
|
# 3. 清理聚合数据
|
3166
3221
|
optimize_data.op_data(
|
@@ -3171,59 +3226,28 @@ def main(days=150, months=3):
|
|
3171
3226
|
)
|
3172
3227
|
|
3173
3228
|
|
3174
|
-
def query_(months=1, less_dict=[]):
|
3175
|
-
if months == 0:
|
3176
|
-
print(f'months 不建议为 0 ')
|
3177
|
-
return
|
3178
|
-
sdq = MysqlDatasQuery() # 实例化数据处理类
|
3179
|
-
sdq.months = months # 设置数据周期, 1 表示近 2 个月
|
3180
|
-
sdq.update_service = True # 调试时加,true: 将数据写入 mysql 服务器
|
3181
|
-
|
3182
|
-
sdq.tg_wxt(db_name='聚合数据', table_name='天猫_主体报表')
|
3183
|
-
sdq.syj(db_name='聚合数据', table_name='生意经_宝贝指标')
|
3184
|
-
sdq.idbm(db_name='聚合数据', table_name='商品id编码表')
|
3185
|
-
sdq.sp_picture(db_name='聚合数据', table_name='商品id图片对照表')
|
3186
|
-
sdq.sp_cost(db_name='聚合数据', table_name='商品成本')
|
3187
|
-
sdq.dplyd(db_name='聚合数据', table_name='店铺流量来源构成')
|
3188
|
-
sdq.jdjzt(db_name='聚合数据', table_name='京东_京准通')
|
3189
|
-
sdq.jdqzyx(db_name='聚合数据', table_name='京东_京准通_全站营销')
|
3190
|
-
sdq.sku_sales(db_name='聚合数据', table_name='京东_sku_商品明细')
|
3191
|
-
sdq.spu_sales(db_name='聚合数据', table_name='京东_spu_商品明细')
|
3192
|
-
sdq.tg_rqbb(db_name='聚合数据', table_name='天猫_人群报表')
|
3193
|
-
sdq.tg_gjc(db_name='聚合数据', table_name='天猫_关键词报表')
|
3194
|
-
sdq.tg_cjzb(db_name='聚合数据', table_name='天猫_超级直播')
|
3195
|
-
sdq.jd_gjc(db_name='聚合数据', table_name='京东_关键词报表')
|
3196
|
-
sdq.pxb_zh(db_name='聚合数据', table_name='天猫_品销宝账户报表')
|
3197
|
-
sdq.se_search(db_name='聚合数据', table_name='天猫店铺来源_手淘搜索')
|
3198
|
-
sdq.zb_ccfx(db_name='聚合数据', table_name='生意参谋_直播场次分析')
|
3199
|
-
sdq.tg_by_day(db_name='聚合数据', table_name='多店推广场景_按日聚合')
|
3200
|
-
sdq.aikucun_bd_spu(db_name='聚合数据', table_name='爱库存_商品spu榜单')
|
3201
|
-
sdq.dmp_crowd(db_name='聚合数据', table_name='达摩盘_人群报表')
|
3202
|
-
sdq.deeplink(db_name='聚合数据', table_name='达摩盘_deeplink人群洞察')
|
3203
|
-
sdq.performance(bb_tg=True, db_name='聚合数据', table_name='_全店商品销售') # _全店商品销售
|
3204
|
-
sdq.performance(bb_tg=False, db_name='聚合数据', table_name='_推广商品销售') # _推广商品销售
|
3205
|
-
sdq.performance_jd(jd_tg=False, db_name='聚合数据', table_name='_京东_推广商品销售') # _推广商品销售
|
3206
|
-
sdq.performance_concat(bb_tg=False, db_name='聚合数据', table_name='天猫_推广汇总') # _推广商品销售
|
3207
|
-
|
3208
|
-
|
3209
3229
|
if __name__ == '__main__':
|
3210
3230
|
main(
|
3211
3231
|
days=150, # 清理聚合数据的日期长度
|
3212
3232
|
months=3 # 生成聚合数据的长度
|
3213
3233
|
)
|
3214
|
-
|
3215
|
-
#
|
3216
|
-
|
3217
|
-
#
|
3218
|
-
#
|
3219
|
-
#
|
3220
|
-
#
|
3221
|
-
#
|
3234
|
+
|
3235
|
+
# query_list = [query1, query2]
|
3236
|
+
# # 使用 ThreadPoolExecutor 来并行运行
|
3237
|
+
# with concurrent.futures.ThreadPoolExecutor() as executor:
|
3238
|
+
# for func_query in query_list:
|
3239
|
+
# future_to_function = {
|
3240
|
+
# executor.submit(
|
3241
|
+
# func_query,
|
3242
|
+
# months=3,
|
3243
|
+
# less_dict=[],
|
3244
|
+
# ),
|
3245
|
+
# }
|
3246
|
+
|
3247
|
+
# # 3. 清理聚合数据
|
3222
3248
|
# optimize_data.op_data(
|
3223
|
-
#
|
3224
|
-
#
|
3225
|
-
# days=3650,
|
3249
|
+
# db_name_lists=['聚合数据'],
|
3250
|
+
# days=180, # 清理聚合数据的日期长度
|
3226
3251
|
# is_mongo=False,
|
3227
3252
|
# is_mysql=True,
|
3228
3253
|
# )
|
3229
|
-
|