mdbq 3.11.8__py3-none-any.whl → 3.11.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mdbq/__version__.py +1 -1
- mdbq/log/mylogger.py +1 -1
- mdbq/mysql/deduplicator.py +180 -85
- mdbq/mysql/uploader.py +49 -1
- {mdbq-3.11.8.dist-info → mdbq-3.11.9.dist-info}/METADATA +1 -1
- {mdbq-3.11.8.dist-info → mdbq-3.11.9.dist-info}/RECORD +8 -8
- {mdbq-3.11.8.dist-info → mdbq-3.11.9.dist-info}/WHEEL +0 -0
- {mdbq-3.11.8.dist-info → mdbq-3.11.9.dist-info}/top_level.txt +0 -0
mdbq/__version__.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
VERSION = '3.11.
|
1
|
+
VERSION = '3.11.9'
|
mdbq/log/mylogger.py
CHANGED
@@ -247,7 +247,7 @@ class MyLogger:
|
|
247
247
|
if isinstance(log_data.get('message'), str):
|
248
248
|
log_data['message'] = log_data['message'].replace(field, '***')
|
249
249
|
|
250
|
-
return json.dumps(log_data, ensure_ascii=False)
|
250
|
+
return json.dumps(log_data, ensure_ascii=False, default=str)
|
251
251
|
|
252
252
|
formatter = StructuredFormatter()
|
253
253
|
|
mdbq/mysql/deduplicator.py
CHANGED
@@ -114,7 +114,7 @@ class MySQLDeduplicator:
|
|
114
114
|
)
|
115
115
|
|
116
116
|
# 配置参数
|
117
|
-
self.max_workers = max(1,
|
117
|
+
self.max_workers = min(max(1, max_workers), pool_size) # 限制最大线程数,不能超过连接池
|
118
118
|
self.batch_size = batch_size
|
119
119
|
self.skip_system_dbs = skip_system_dbs
|
120
120
|
self.max_retries = max_retries
|
@@ -269,7 +269,8 @@ class MySQLDeduplicator:
|
|
269
269
|
with conn.cursor() as cursor:
|
270
270
|
cursor.execute(f"USE `{database}`")
|
271
271
|
cursor.execute(sql)
|
272
|
-
|
272
|
+
# 严格过滤所有以'temp_'为前缀的表名(如temp_xxx、temp_xxx_dedup_...、temp_xxx_reorderid_...等)
|
273
|
+
return [row[f'Tables_in_{database}'] for row in cursor.fetchall() if not re.match(r'^temp_.*', row[f'Tables_in_{database}'])]
|
273
274
|
|
274
275
|
@_retry_on_failure
|
275
276
|
def _get_table_columns(self, database: str, table: str) -> List[str]:
|
@@ -328,46 +329,73 @@ class MySQLDeduplicator:
|
|
328
329
|
if key in self._processing_tables:
|
329
330
|
self._processing_tables.remove(key)
|
330
331
|
|
332
|
+
@_retry_on_failure
|
333
|
+
def _ensure_index(self, database: str, table: str, date_column: str) -> None:
|
334
|
+
"""
|
335
|
+
检查并为date_column自动创建索引(如果未存在)。
|
336
|
+
Args:
|
337
|
+
database (str): 数据库名。
|
338
|
+
table (str): 表名。
|
339
|
+
date_column (str): 需要检查的日期列名。
|
340
|
+
"""
|
341
|
+
with self._get_connection() as conn:
|
342
|
+
with conn.cursor() as cursor:
|
343
|
+
# 检查索引是否已存在
|
344
|
+
cursor.execute(
|
345
|
+
"""
|
346
|
+
SELECT COUNT(1) as idx_count FROM INFORMATION_SCHEMA.STATISTICS
|
347
|
+
WHERE TABLE_SCHEMA = %s AND TABLE_NAME = %s AND COLUMN_NAME = %s
|
348
|
+
""",
|
349
|
+
(database, table, date_column)
|
350
|
+
)
|
351
|
+
idx_count = cursor.fetchone()['idx_count']
|
352
|
+
if idx_count == 0:
|
353
|
+
# 自动创建索引
|
354
|
+
index_name = f"idx_{date_column}"
|
355
|
+
safe_index_name = self._make_safe_table_name(index_name, prefix='', suffix='', max_length=64)
|
356
|
+
try:
|
357
|
+
cursor.execute(f"CREATE INDEX `{safe_index_name}` ON `{database}`.`{table}` (`{date_column}`)")
|
358
|
+
conn.commit()
|
359
|
+
logger.info('已自动为date_column创建索引', {"库": database, "表": table, "date_column": date_column, "索引名": safe_index_name})
|
360
|
+
except Exception as e:
|
361
|
+
logger.error('自动创建date_column索引失败', {"库": database, "表": table, "date_column": date_column, "异常": str(e)})
|
362
|
+
else:
|
363
|
+
logger.debug('date_column已存在索引', {"库": database, "表": table, "date_column": date_column})
|
364
|
+
|
331
365
|
def _deduplicate_table(
|
332
366
|
self,
|
333
367
|
database: str,
|
334
368
|
table: str,
|
335
369
|
columns: Optional[List[str]] = None,
|
336
|
-
dry_run: bool = False
|
370
|
+
dry_run: bool = False,
|
371
|
+
use_python_dedup: bool = False
|
337
372
|
) -> Tuple[int, int]:
|
338
373
|
"""
|
339
374
|
执行单表去重。
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
table (str): 表名。
|
344
|
-
columns (Optional[List[str]]): 用于去重的列名列表(为None时使用所有列)。
|
345
|
-
dry_run (bool): 是否为模拟运行(只统计不实际删除)。
|
346
|
-
Returns:
|
347
|
-
Tuple[int, int]: (重复组数, 实际删除行数)。
|
375
|
+
支持按天分批处理(如果表包含date_column),否则全表去重。
|
376
|
+
如果date_column在exclude_columns中,直接跳过该表。
|
377
|
+
优化:分批删除时用主键、避免重复建/删临时表、并发处理每天。
|
348
378
|
"""
|
349
379
|
if not self._acquire_table_lock(database, table):
|
350
380
|
return (0, 0)
|
351
381
|
temp_table = None
|
352
382
|
try:
|
353
|
-
# 获取原始数据总量
|
354
|
-
with self._get_connection() as conn:
|
355
|
-
with conn.cursor() as cursor:
|
356
|
-
logger.debug('执行SQL', {'sql': f'SELECT COUNT(*) as cnt FROM `{database}`.`{table}`'})
|
357
|
-
cursor.execute(f"SELECT COUNT(*) as cnt FROM `{database}`.`{table}`")
|
358
|
-
total_count_row = cursor.fetchone()
|
359
|
-
total_count = total_count_row['cnt'] if total_count_row and 'cnt' in total_count_row else 0
|
360
|
-
logger.info('执行', {"库": database, "表": table, "开始处理数据量": total_count, 'func': sys._getframe().f_code.co_name})
|
361
383
|
# 获取实际列名
|
362
384
|
all_columns = self._get_table_columns(database, table)
|
363
|
-
logger.debug('获取表列', {'库': database, '表': table, 'all_columns': all_columns})
|
364
|
-
# 检查是否需要按时间范围过滤
|
365
|
-
use_time_filter = False
|
366
|
-
time_col = self.date_column
|
367
385
|
all_columns_lower = [col.lower() for col in all_columns]
|
368
|
-
# 排除exclude_columns
|
369
386
|
exclude_columns_lower = [col.lower() for col in getattr(self, 'exclude_columns', [])]
|
370
|
-
|
387
|
+
time_col = self.date_column
|
388
|
+
time_col_lower = time_col.lower() if time_col else None
|
389
|
+
# 1. 跳过date_column在exclude_columns的情况
|
390
|
+
if time_col_lower and time_col_lower in exclude_columns_lower:
|
391
|
+
logger.warning('date_column在exclude_columns中,跳过该表', {"库": database, "表": table, "date_column": time_col, "exclude_columns": self.exclude_columns})
|
392
|
+
return (0, 0)
|
393
|
+
# 2. 判断表是否包含date_column
|
394
|
+
has_time_col = time_col_lower in all_columns_lower if time_col_lower else False
|
395
|
+
# 如果包含date_column,自动检查并创建索引
|
396
|
+
if has_time_col:
|
397
|
+
self._ensure_index(database, table, time_col)
|
398
|
+
# 3. 获取去重列
|
371
399
|
use_columns = columns or all_columns
|
372
400
|
use_columns = [col for col in use_columns if col.lower() in all_columns_lower and col.lower() not in exclude_columns_lower]
|
373
401
|
invalid_columns = set([col for col in (columns or []) if col.lower() not in all_columns_lower])
|
@@ -376,81 +404,126 @@ class MySQLDeduplicator:
|
|
376
404
|
if not use_columns:
|
377
405
|
logger.error('没有有效的去重列', {"库": database, "表": table})
|
378
406
|
return (0, 0)
|
379
|
-
# 统一用反引号包裹
|
380
|
-
column_list = ', '.join([f'`{col}`' for col in use_columns])
|
381
|
-
temp_table = self._make_safe_table_name(table, prefix=f"temp_", suffix=f"_dedup_{os.getpid()}_{threading.get_ident()}")
|
382
407
|
pk = self.primary_key
|
383
|
-
# 主键判断也用小写
|
384
|
-
if pk.lower() not in all_columns_lower and pk != 'id':
|
385
|
-
logger.error('', {"不存在主键列": database, "表": table, "主键列不存在": pk})
|
386
|
-
return (0, 0)
|
387
|
-
# 找到实际主键名
|
388
408
|
pk_real = next((c for c in all_columns if c.lower() == pk.lower()), pk)
|
389
|
-
#
|
390
|
-
|
391
|
-
if
|
392
|
-
|
409
|
+
# 判断是否需要加日期区间条件
|
410
|
+
where_sql = ''
|
411
|
+
if has_time_col and self._dedup_start_date and self._dedup_end_date:
|
412
|
+
where_sql = f"t.`{time_col}` >= '{self._dedup_start_date}' AND t.`{time_col}` <= '{self._dedup_end_date}'"
|
413
|
+
# 获取原始数据总量(只统计区间内数据)
|
414
|
+
with self._get_connection() as conn:
|
415
|
+
with conn.cursor() as cursor:
|
416
|
+
count_where = f"WHERE `{time_col}` >= '{self._dedup_start_date}' AND `{time_col}` <= '{self._dedup_end_date}'" if has_time_col and self._dedup_start_date and self._dedup_end_date else ''
|
417
|
+
count_sql = f"SELECT COUNT(*) as cnt FROM `{database}`.`{table}` {count_where}"
|
418
|
+
logger.debug('执行SQL', {'sql': count_sql})
|
419
|
+
cursor.execute(count_sql)
|
420
|
+
total_count_row = cursor.fetchone()
|
421
|
+
total_count = total_count_row['cnt'] if total_count_row and 'cnt' in total_count_row else 0
|
422
|
+
logger.info('执行', {"库": database, "表": table, "开始处理数据量": total_count, 'func': sys._getframe().f_code.co_name})
|
423
|
+
column_list = ', '.join([f'`{col}`' for col in use_columns])
|
424
|
+
|
425
|
+
# 用Python查找重复
|
426
|
+
if use_python_dedup:
|
427
|
+
from collections import defaultdict
|
428
|
+
# 1. 拉取所有数据
|
429
|
+
select_cols = f'`{pk_real}`,' + ','.join([f'`{col}`' for col in use_columns])
|
430
|
+
select_where = f"WHERE `{time_col}` >= '{self._dedup_start_date}' AND `{time_col}` <= '{self._dedup_end_date}'" if has_time_col and self._dedup_start_date and self._dedup_end_date else ''
|
431
|
+
select_sql = f"SELECT {select_cols} FROM `{database}`.`{table}` {select_where}"
|
432
|
+
logger.debug('用Python查找重复,拉取数据SQL', {'sql': select_sql})
|
433
|
+
with self._get_connection() as conn:
|
434
|
+
with conn.cursor() as cursor:
|
435
|
+
cursor.execute(select_sql)
|
436
|
+
rows = cursor.fetchall()
|
437
|
+
# 2. 分组找重复
|
438
|
+
grouped = defaultdict(list)
|
439
|
+
for row in rows:
|
440
|
+
key = tuple(row[col] for col in use_columns)
|
441
|
+
grouped[key].append(row[pk_real])
|
442
|
+
# 3. 统计重复组和待删除id
|
443
|
+
dup_count = 0
|
444
|
+
del_ids = []
|
445
|
+
for ids in grouped.values():
|
446
|
+
if len(ids) > 1:
|
447
|
+
dup_count += 1
|
448
|
+
del_ids.extend(ids[1:]) # 只保留第一个
|
449
|
+
affected_rows = 0
|
450
|
+
if not dry_run and del_ids:
|
451
|
+
with self._get_connection() as conn:
|
452
|
+
with conn.cursor() as cursor:
|
453
|
+
for i in range(0, len(del_ids), self.batch_size):
|
454
|
+
batch = del_ids[i:i+self.batch_size]
|
455
|
+
del_ids_str = ','.join([str(i) for i in batch])
|
456
|
+
delete_sql = f"DELETE FROM `{database}`.`{table}` WHERE `{pk_real}` IN ({del_ids_str})"
|
457
|
+
logger.debug('用Python分批删除SQL', {'sql': delete_sql, 'ids': batch})
|
458
|
+
cursor.execute(delete_sql)
|
459
|
+
batch_deleted = cursor.rowcount
|
460
|
+
affected_rows += batch_deleted
|
461
|
+
conn.commit()
|
462
|
+
logger.info('用Python去重完成', {"库": database, "表": table, "数据量": total_count, "重复组数": dup_count, "实际删除": affected_rows, "去重模式": self.duplicate_keep_mode, "实际去重列": use_columns})
|
463
|
+
return (dup_count, affected_rows)
|
464
|
+
# SQL方式查找重复
|
465
|
+
temp_table = self._make_safe_table_name(table, prefix=f"temp_", suffix=f"_dedup_{os.getpid()}_{threading.get_ident()}")
|
466
|
+
drop_temp_sql = f"DROP TABLE IF EXISTS `{database}`.`{temp_table}`"
|
467
|
+
# 创建临时表时加where条件
|
468
|
+
create_temp_where = f"WHERE `{time_col}` >= '{self._dedup_start_date}' AND `{time_col}` <= '{self._dedup_end_date}'" if has_time_col and self._dedup_start_date and self._dedup_end_date else ''
|
393
469
|
create_temp_sql = f"""
|
394
470
|
CREATE TABLE `{database}`.`{temp_table}` AS
|
395
471
|
SELECT MIN(`{pk_real}`) as `min_id`, {column_list}, COUNT(*) as `dup_count`
|
396
472
|
FROM `{database}`.`{table}`
|
397
|
-
{
|
473
|
+
{create_temp_where}
|
398
474
|
GROUP BY {column_list}
|
399
475
|
HAVING COUNT(*) > 1
|
400
476
|
"""
|
401
|
-
drop_temp_sql = f"DROP TABLE IF EXISTS `{database}`.`{temp_table}`"
|
402
477
|
with self._get_connection() as conn:
|
403
478
|
with conn.cursor() as cursor:
|
404
479
|
logger.debug('创建临时表SQL', {'sql': create_temp_sql})
|
405
480
|
cursor.execute(create_temp_sql)
|
406
|
-
logger.debug('统计临时表重复组SQL', {'sql': f'SELECT COUNT(*) as cnt FROM `{database}`.`{temp_table}`'})
|
407
481
|
cursor.execute(f"SELECT COUNT(*) as cnt FROM `{database}`.`{temp_table}`")
|
408
482
|
dup_count_row = cursor.fetchone()
|
409
483
|
dup_count = dup_count_row['cnt'] if dup_count_row and 'cnt' in dup_count_row else 0
|
410
484
|
if dup_count == 0:
|
411
|
-
logger.info('没有重复数据', {"库": database, "表": table, "数据量": total_count, "
|
412
|
-
logger.debug('删除临时表SQL', {'sql': drop_temp_sql})
|
485
|
+
logger.info('没有重复数据', {"库": database, "表": table, "数据量": total_count, "实际去重列": use_columns})
|
413
486
|
cursor.execute(drop_temp_sql)
|
414
487
|
conn.commit()
|
415
488
|
return (0, 0)
|
416
489
|
affected_rows = 0
|
417
490
|
if not dry_run:
|
418
|
-
# 分批删除,避免锁表
|
419
491
|
while True:
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
431
|
-
|
432
|
-
|
433
|
-
|
434
|
-
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
cursor.execute(delete_dup_sql)
|
492
|
+
where_clauses = []
|
493
|
+
if self.duplicate_keep_mode == 'keep_one':
|
494
|
+
where_clauses.append(f"t.`{pk_real}` <> tmp.`min_id`")
|
495
|
+
if where_sql.strip():
|
496
|
+
where_clauses.append(where_sql.strip())
|
497
|
+
where_full = "WHERE " + " AND ".join(where_clauses) if where_clauses else ""
|
498
|
+
find_dup_ids_sql = f"""
|
499
|
+
SELECT t.`{pk_real}` as del_id
|
500
|
+
FROM `{database}`.`{table}` t
|
501
|
+
JOIN `{database}`.`{temp_table}` tmp
|
502
|
+
ON {' AND '.join([f't.`{col}` <=> tmp.`{col}`' for col in use_columns])}
|
503
|
+
{where_full}
|
504
|
+
LIMIT {self.batch_size}
|
505
|
+
"""
|
506
|
+
logger.debug('查找待删除重复id SQL', {'sql': find_dup_ids_sql})
|
507
|
+
cursor.execute(find_dup_ids_sql)
|
508
|
+
del_ids = [row['del_id'] for row in cursor.fetchall()]
|
509
|
+
if not del_ids:
|
510
|
+
break
|
511
|
+
del_ids_str = ','.join([str(i) for i in del_ids])
|
512
|
+
delete_sql = f"DELETE FROM `{database}`.`{table}` WHERE `{pk_real}` IN ({del_ids_str})"
|
513
|
+
logger.debug('按id批量删除SQL', {'sql': delete_sql, 'ids': del_ids})
|
514
|
+
cursor.execute(delete_sql)
|
444
515
|
batch_deleted = cursor.rowcount
|
445
516
|
affected_rows += batch_deleted
|
446
517
|
conn.commit()
|
518
|
+
if batch_deleted == 0:
|
519
|
+
logger.warning('检测到未能删除任何数据,强制跳出循环,防止假死', {"库": database, "表": table})
|
520
|
+
break
|
447
521
|
if batch_deleted < self.batch_size:
|
448
522
|
break
|
449
|
-
logger.info('操作删除', {"库": database, "表": table, "数据量": total_count, "重复组数": dup_count, "实际删除": affected_rows, "
|
523
|
+
logger.info('操作删除', {"库": database, "表": table, "数据量": total_count, "重复组数": dup_count, "实际删除": affected_rows, "去重模式": self.duplicate_keep_mode, "实际去重列": use_columns})
|
450
524
|
else:
|
451
|
-
logger.debug('dry_run模式,不执行删除', {"库": database, "表": table, "重复组数": dup_count
|
525
|
+
logger.debug('dry_run模式,不执行删除', {"库": database, "表": table, "重复组数": dup_count})
|
452
526
|
affected_rows = 0
|
453
|
-
logger.debug('删除临时表SQL', {'sql': drop_temp_sql})
|
454
527
|
cursor.execute(drop_temp_sql)
|
455
528
|
conn.commit()
|
456
529
|
return (dup_count, affected_rows)
|
@@ -475,7 +548,9 @@ class MySQLDeduplicator:
|
|
475
548
|
database: str,
|
476
549
|
table: str,
|
477
550
|
columns: Optional[List[str]] = None,
|
478
|
-
dry_run: bool = False
|
551
|
+
dry_run: bool = False,
|
552
|
+
reorder_id: bool = False,
|
553
|
+
use_python_dedup: bool = True
|
479
554
|
) -> Tuple[int, int]:
|
480
555
|
"""
|
481
556
|
对指定表进行去重。
|
@@ -485,6 +560,8 @@ class MySQLDeduplicator:
|
|
485
560
|
table (str): 表名。
|
486
561
|
columns (Optional[List[str]]): 用于去重的列名列表(为None时使用所有列)。
|
487
562
|
dry_run (bool): 是否为模拟运行(只统计不实际删除)。
|
563
|
+
reorder_id (bool): 去重后是否重排id。
|
564
|
+
use_python_dedup (bool): 是否用Python查找重复id。
|
488
565
|
Returns:
|
489
566
|
Tuple[int, int]: (重复组数, 实际删除行数)。
|
490
567
|
"""
|
@@ -495,9 +572,17 @@ class MySQLDeduplicator:
|
|
495
572
|
if not self._check_table_exists(database, table):
|
496
573
|
logger.warning('表不存在', {"库": database, "表": table, "warning": "跳过"})
|
497
574
|
return (0, 0)
|
498
|
-
logger.info('单表开始', {"库": database, "表": table, "参数": {"指定去重列": columns, "模拟运行": dry_run, '排除列': self.exclude_columns}})
|
499
|
-
result = self._deduplicate_table(database, table, columns, dry_run)
|
575
|
+
logger.info('单表开始', {"库": database, "表": table, "参数": {"指定去重列": columns, "模拟运行": dry_run, '排除列': self.exclude_columns, 'use_python_dedup': use_python_dedup}})
|
576
|
+
result = self._deduplicate_table(database, table, columns, dry_run, use_python_dedup)
|
500
577
|
logger.info('单表完成', {"库": database, "表": table, "结果[重复, 删除]": result})
|
578
|
+
# 自动重排id列(仅当有实际删除时且reorder_id为True)
|
579
|
+
dup_count, affected_rows = result
|
580
|
+
if reorder_id and affected_rows > 0:
|
581
|
+
try:
|
582
|
+
reorder_ok = self.reorder_id_column(database, table, id_column=self.primary_key, dry_run=dry_run)
|
583
|
+
logger.info('自动重排id列完成', {"库": database, "表": table, "结果": reorder_ok})
|
584
|
+
except Exception as e:
|
585
|
+
logger.error('自动重排id列异常', {"库": database, "表": table, "异常": str(e)})
|
501
586
|
return result
|
502
587
|
except Exception as e:
|
503
588
|
logger.error('发生全局错误', {"库": database, "表": table, 'func': sys._getframe().f_code.co_name, "发生全局错误": str(e)})
|
@@ -509,7 +594,9 @@ class MySQLDeduplicator:
|
|
509
594
|
tables: Optional[List[str]] = None,
|
510
595
|
columns_map: Optional[Dict[str, List[str]]] = None,
|
511
596
|
dry_run: bool = False,
|
512
|
-
parallel: bool = False
|
597
|
+
parallel: bool = False,
|
598
|
+
reorder_id: bool = False,
|
599
|
+
use_python_dedup: bool = True
|
513
600
|
) -> Dict[str, Tuple[int, int]]:
|
514
601
|
"""
|
515
602
|
对指定数据库的所有表进行去重。
|
@@ -520,6 +607,8 @@ class MySQLDeduplicator:
|
|
520
607
|
columns_map (Optional[Dict[str, List[str]]]): 各表使用的去重列 {表名: [列名]}。
|
521
608
|
dry_run (bool): 是否为模拟运行。
|
522
609
|
parallel (bool): 是否并行处理。
|
610
|
+
reorder_id (bool): 去重后是否重排id。
|
611
|
+
use_python_dedup (bool): 是否用Python查找重复id。
|
523
612
|
Returns:
|
524
613
|
Dict[str, Tuple[int, int]]: {表名: (重复组数, 实际删除行数)}。
|
525
614
|
"""
|
@@ -548,7 +637,7 @@ class MySQLDeduplicator:
|
|
548
637
|
logger.debug('提交表去重任务', {'库': database, '表': table, 'columns': columns})
|
549
638
|
futures[executor.submit(
|
550
639
|
self.deduplicate_table,
|
551
|
-
database, table, columns, dry_run
|
640
|
+
database, table, columns, dry_run, reorder_id, True
|
552
641
|
)] = table
|
553
642
|
for future in concurrent.futures.as_completed(futures):
|
554
643
|
table = futures[future]
|
@@ -564,7 +653,7 @@ class MySQLDeduplicator:
|
|
564
653
|
for table in target_tables:
|
565
654
|
columns = columns_map.get(table) if columns_map else None
|
566
655
|
dup_count, affected_rows = self.deduplicate_table(
|
567
|
-
database, table, columns, dry_run
|
656
|
+
database, table, columns, dry_run, reorder_id, True
|
568
657
|
)
|
569
658
|
results[table] = (dup_count, affected_rows)
|
570
659
|
total_dup = sum(r[0] for r in results.values())
|
@@ -581,7 +670,9 @@ class MySQLDeduplicator:
|
|
581
670
|
tables_map: Optional[Dict[str, List[str]]] = None,
|
582
671
|
columns_map: Optional[Dict[str, Dict[str, List[str]]]] = None,
|
583
672
|
dry_run: bool = False,
|
584
|
-
parallel: bool = False
|
673
|
+
parallel: bool = False,
|
674
|
+
reorder_id: bool = False,
|
675
|
+
use_python_dedup: bool = True
|
585
676
|
) -> Dict[str, Dict[str, Tuple[int, int]]]:
|
586
677
|
"""
|
587
678
|
对所有数据库进行去重。
|
@@ -592,6 +683,8 @@ class MySQLDeduplicator:
|
|
592
683
|
columns_map (Optional[Dict[str, Dict[str, List[str]]]]): 指定每个表去重时使用的列,格式为 {数据库名: {表名: [列名, ...]}}。如果为 None,则使用所有列。
|
593
684
|
dry_run (bool): 是否为模拟运行模式。为 True 时只统计重复行数,不实际删除。
|
594
685
|
parallel (bool): 是否并行处理多个数据库。为 True 时使用线程池并发处理。
|
686
|
+
reorder_id (bool): 去重后是否重排id。
|
687
|
+
use_python_dedup (bool): 是否用Python查找重复id。
|
595
688
|
Returns:
|
596
689
|
Dict[str, Dict[str, Tuple[int, int]]]: 嵌套字典,格式为 {数据库名: {表名: (重复组数, 实际删除行数)}}。
|
597
690
|
"""
|
@@ -603,7 +696,7 @@ class MySQLDeduplicator:
|
|
603
696
|
if not target_dbs:
|
604
697
|
logger.warning('没有可处理的数据库')
|
605
698
|
return all_results
|
606
|
-
logger.info('全局开始', {"数据库数量": len(target_dbs), "数据库列表": target_dbs, "参数": {"模拟运行": dry_run, "并行处理": parallel, '排除列': self.exclude_columns}})
|
699
|
+
logger.info('全局开始', {"数据库数量": len(target_dbs), "数据库列表": target_dbs, "参数": {"模拟运行": dry_run, "并行处理": parallel, '排除列': self.exclude_columns, 'use_python_dedup': use_python_dedup}})
|
607
700
|
if parallel and self.max_workers > 1:
|
608
701
|
# 使用线程池并行处理多个数据库
|
609
702
|
with concurrent.futures.ThreadPoolExecutor(
|
@@ -615,7 +708,7 @@ class MySQLDeduplicator:
|
|
615
708
|
db_columns_map = columns_map.get(db) if columns_map else None
|
616
709
|
futures[executor.submit(
|
617
710
|
self.deduplicate_database,
|
618
|
-
db, tables, db_columns_map, dry_run, False
|
711
|
+
db, tables, db_columns_map, dry_run, False, reorder_id, True
|
619
712
|
)] = db
|
620
713
|
for future in concurrent.futures.as_completed(futures):
|
621
714
|
db = futures[future]
|
@@ -631,7 +724,7 @@ class MySQLDeduplicator:
|
|
631
724
|
tables = tables_map.get(db) if tables_map else None
|
632
725
|
db_columns_map = columns_map.get(db) if columns_map else None
|
633
726
|
db_results = self.deduplicate_database(
|
634
|
-
db, tables, db_columns_map, dry_run, parallel
|
727
|
+
db, tables, db_columns_map, dry_run, parallel, reorder_id, True
|
635
728
|
)
|
636
729
|
all_results[db] = db_results
|
637
730
|
total_dup = sum(
|
@@ -806,7 +899,7 @@ class MySQLDeduplicator:
|
|
806
899
|
with conn.cursor() as cursor:
|
807
900
|
cursor.execute(f"SHOW CREATE TABLE {table_quoted}")
|
808
901
|
create_table_sql = cursor.fetchone()['Create Table']
|
809
|
-
logger.info('开始id重排', {"库": database, "表": table, "重排列": id_column, "
|
902
|
+
logger.info('开始id重排', {"库": database, "表": table, "重排列": id_column, "试运行": dry_run, "DDL警告": "MySQL DDL操作不可回滚,建议提前备份!"})
|
810
903
|
if dry_run:
|
811
904
|
logger.info('dry_run模式,打印原表结构', {"库": database, "表": table, "建表语句": create_table_sql})
|
812
905
|
return True
|
@@ -933,17 +1026,19 @@ def main():
|
|
933
1026
|
username='root',
|
934
1027
|
password='pwd',
|
935
1028
|
host='localhost',
|
936
|
-
port=3306
|
1029
|
+
port=3306,
|
1030
|
+
date_range=['2025-05-27', '2025-05-28'],
|
1031
|
+
exclude_tables={'推广数据2': ['地域报表_城市_2025_05_copy1', '主体报表_2025_copy1']}
|
937
1032
|
)
|
938
1033
|
|
939
1034
|
# 全库去重(单线程)
|
940
|
-
deduplicator.deduplicate_all(dry_run=False, parallel=True)
|
1035
|
+
deduplicator.deduplicate_all(dry_run=False, parallel=True, reorder_id=True)
|
941
1036
|
|
942
1037
|
# # 指定数据库去重(多线程)
|
943
|
-
# deduplicator.deduplicate_database('my_db', dry_run=False, parallel=False)
|
1038
|
+
# deduplicator.deduplicate_database('my_db', dry_run=False, parallel=False, reorder_id=False)
|
944
1039
|
|
945
1040
|
# # 指定表去重(使用特定列)
|
946
|
-
# deduplicator.deduplicate_table('my_db', 'my_table', columns=['name', 'date'], dry_run=False)
|
1041
|
+
# deduplicator.deduplicate_table('my_db', 'my_table', columns=['name', 'date'], dry_run=False, reorder_id=False)
|
947
1042
|
|
948
1043
|
# # 重排id列
|
949
1044
|
# deduplicator.reorder_id_column('my_db', 'my_table', 'id', dry_run=False, auto_drop_backup=True)
|
mdbq/mysql/uploader.py
CHANGED
@@ -428,6 +428,7 @@ class MySQLUploader:
|
|
428
428
|
if idx_col in set_typ:
|
429
429
|
safe_idx_col = self._validate_identifier(idx_col)
|
430
430
|
index_defs.append(f"INDEX `idx_{safe_idx_col}` (`{safe_idx_col}`)")
|
431
|
+
index_defs = list(set(index_defs))
|
431
432
|
index_sql = (',' + ','.join(index_defs)) if index_defs else ''
|
432
433
|
sql = f"""
|
433
434
|
CREATE TABLE IF NOT EXISTS `{db_name}`.`{table_name}` (
|
@@ -593,6 +594,34 @@ class MySQLUploader:
|
|
593
594
|
logger.error('无法获取表列信息', {'库': db_name, '表': table_name, '错误': str(e)})
|
594
595
|
raise
|
595
596
|
|
597
|
+
def _ensure_index(self, db_name: str, table_name: str, column: str):
|
598
|
+
"""
|
599
|
+
确保某列有索引,如果没有则创建。
|
600
|
+
"""
|
601
|
+
db_name = self._validate_identifier(db_name)
|
602
|
+
table_name = self._validate_identifier(table_name)
|
603
|
+
column = self._validate_identifier(column)
|
604
|
+
# 检查索引是否已存在
|
605
|
+
sql_check = '''
|
606
|
+
SELECT COUNT(1) FROM INFORMATION_SCHEMA.STATISTICS
|
607
|
+
WHERE TABLE_SCHEMA = %s AND TABLE_NAME = %s AND COLUMN_NAME = %s
|
608
|
+
'''
|
609
|
+
sql_create = f'ALTER TABLE `{db_name}`.`{table_name}` ADD INDEX `idx_{column}` (`{column}`)'
|
610
|
+
try:
|
611
|
+
with self._get_connection() as conn:
|
612
|
+
with conn.cursor() as cursor:
|
613
|
+
cursor.execute(sql_check, (db_name, table_name, column))
|
614
|
+
exists = cursor.fetchone()
|
615
|
+
if exists and list(exists.values())[0] > 0:
|
616
|
+
logger.debug('索引已存在', {'库': db_name, '表': table_name, '列': column})
|
617
|
+
return
|
618
|
+
cursor.execute(sql_create)
|
619
|
+
conn.commit()
|
620
|
+
logger.info('已为列创建索引', {'库': db_name, '表': table_name, '列': column})
|
621
|
+
except Exception as e:
|
622
|
+
logger.error('创建索引失败', {'库': db_name, '表': table_name, '列': column, '错误': str(e)})
|
623
|
+
raise
|
624
|
+
|
596
625
|
def _upload_to_table(
|
597
626
|
self,
|
598
627
|
db_name: str,
|
@@ -646,6 +675,13 @@ class MySQLUploader:
|
|
646
675
|
})
|
647
676
|
raise ValueError(f"列不存在: `{col}` -> `{db_name}`.`{table_name}`")
|
648
677
|
|
678
|
+
# 确保分表参考字段为索引
|
679
|
+
if date_column and date_column in table_columns:
|
680
|
+
try:
|
681
|
+
self._ensure_index(db_name, table_name, date_column)
|
682
|
+
except Exception as e:
|
683
|
+
logger.warning('分表参考字段索引创建失败', {'库': db_name, '表': table_name, '列': date_column, '错误': str(e)})
|
684
|
+
|
649
685
|
# 插入数据
|
650
686
|
self._insert_data(
|
651
687
|
db_name, table_name, data, set_typ,
|
@@ -868,7 +904,7 @@ class MySQLUploader:
|
|
868
904
|
:param duplicate_columns: 用于检查重复的列,可选
|
869
905
|
:param allow_null: 是否允许空值,默认为False
|
870
906
|
:param partition_by: 分表方式('year'、'month'、'None'),可选
|
871
|
-
:param partition_date_column: 用于分表的日期列名,默认为'日期'
|
907
|
+
:param partition_date_column: 用于分表的日期列名,默认为'日期', 默认会添加为索引
|
872
908
|
:param auto_create: 表不存在时是否自动创建,默认为True
|
873
909
|
:param indexes: 需要创建索引的列列表,可选
|
874
910
|
:param update_on_duplicate: 遇到重复数据时是否更新旧数据,默认为False
|
@@ -977,6 +1013,12 @@ class MySQLUploader:
|
|
977
1013
|
allow_null, auto_create, partition_date_column,
|
978
1014
|
indexes, batch_id, update_on_duplicate, transaction_mode
|
979
1015
|
)
|
1016
|
+
# 确保分表参考字段为索引
|
1017
|
+
if partition_date_column in filtered_set_typ:
|
1018
|
+
try:
|
1019
|
+
self._ensure_index(db_name, part_table, partition_date_column)
|
1020
|
+
except Exception as e:
|
1021
|
+
logger.warning('分表参考字段索引创建失败', {'库': db_name, '表': part_table, '列': partition_date_column, '错误': str(e)})
|
980
1022
|
except Exception as e:
|
981
1023
|
logger.error('分表上传异常', {
|
982
1024
|
'库': db_name,
|
@@ -995,6 +1037,12 @@ class MySQLUploader:
|
|
995
1037
|
allow_null, auto_create, partition_date_column,
|
996
1038
|
indexes, batch_id, update_on_duplicate, transaction_mode
|
997
1039
|
)
|
1040
|
+
# 确保分表参考字段为索引
|
1041
|
+
if partition_date_column in filtered_set_typ:
|
1042
|
+
try:
|
1043
|
+
self._ensure_index(db_name, table_name, partition_date_column)
|
1044
|
+
except Exception as e:
|
1045
|
+
logger.warning('分表参考字段索引创建失败', {'库': db_name, '表': table_name, '列': partition_date_column, '错误': str(e)})
|
998
1046
|
|
999
1047
|
success_flag = True
|
1000
1048
|
|
@@ -1,17 +1,17 @@
|
|
1
1
|
mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
|
2
|
-
mdbq/__version__.py,sha256=
|
2
|
+
mdbq/__version__.py,sha256=PDdrWyCY8MR3t82c_RzSF6lAB6oCcZdWveXkX7AvIIQ,18
|
3
3
|
mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
|
4
4
|
mdbq/aggregation/query_data.py,sha256=nxL8hSy8yI1QLlqnkTNHHQSxRfo-6WKL5OA-N4xLB7c,179832
|
5
5
|
mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
|
6
6
|
mdbq/config/config.py,sha256=eaTfrfXQ65xLqjr5I8-HkZd_jEY1JkGinEgv3TSLeoQ,3170
|
7
7
|
mdbq/log/__init__.py,sha256=Mpbrav0s0ifLL7lVDAuePEi1hJKiSHhxcv1byBKDl5E,15
|
8
|
-
mdbq/log/mylogger.py,sha256=
|
8
|
+
mdbq/log/mylogger.py,sha256=Crw6LwVo3I3IUbzIETu8f46Quza3CTCh-qYf4edbBPo,24139
|
9
9
|
mdbq/log/spider_logging.py,sha256=-ozWWEGm3HVv604ozs_OOvVwumjokmUPwbaodesUrPY,1664
|
10
10
|
mdbq/mysql/__init__.py,sha256=A_DPJyAoEvTSFojiI2e94zP0FKtCkkwKP1kYUCSyQzo,11
|
11
|
-
mdbq/mysql/deduplicator.py,sha256=
|
11
|
+
mdbq/mysql/deduplicator.py,sha256=G7hdIO6rDLBNo1jSm6PbmPAzzfdN2jZFP4BnLhO02Mo,52970
|
12
12
|
mdbq/mysql/mysql.py,sha256=Kjpi-LL00WQUmTTOfhEBsNrmo4-4kFFJzrHbVKfqiBE,56770
|
13
13
|
mdbq/mysql/s_query.py,sha256=dlnrVJ3-Vp1Suv9CNbPxyYSRqRJUHjOpF39tb2F-wBc,10190
|
14
|
-
mdbq/mysql/uploader.py,sha256=
|
14
|
+
mdbq/mysql/uploader.py,sha256=8Px_W2bYOr1wQgMXMK0DggNiuE6a6Ul4BlJake8LSo8,64469
|
15
15
|
mdbq/other/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
|
16
16
|
mdbq/other/download_sku_picture.py,sha256=YU8DxKMXbdeE1OOKEA848WVp62jYHw5O4tXTjUdq9H0,44832
|
17
17
|
mdbq/other/otk.py,sha256=iclBIFbQbhlqzUbcMMoePXBpcP1eZ06ZtjnhcA_EbmE,7241
|
@@ -24,7 +24,7 @@ mdbq/redis/__init__.py,sha256=YtgBlVSMDphtpwYX248wGge1x-Ex_mMufz4-8W0XRmA,12
|
|
24
24
|
mdbq/redis/getredis.py,sha256=YHgCKO8mEsslwet33K5tGss-nrDDwPnOSlhA9iBu0jY,24078
|
25
25
|
mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
|
26
26
|
mdbq/spider/aikucun.py,sha256=cqK-JRd_DHbToC7hyo83m8o97NZkJFqmB2xBtr6aAVU,20961
|
27
|
-
mdbq-3.11.
|
28
|
-
mdbq-3.11.
|
29
|
-
mdbq-3.11.
|
30
|
-
mdbq-3.11.
|
27
|
+
mdbq-3.11.9.dist-info/METADATA,sha256=djSbJHNSHuyh2So6ia5CluTggpZ4REj9jxhO9vwOeKw,364
|
28
|
+
mdbq-3.11.9.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
29
|
+
mdbq-3.11.9.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
|
30
|
+
mdbq-3.11.9.dist-info/RECORD,,
|
File without changes
|
File without changes
|