mdbq 3.11.10__py3-none-any.whl → 3.11.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mdbq/__version__.py +1 -1
- mdbq/mysql/deduplicator.py +408 -291
- {mdbq-3.11.10.dist-info → mdbq-3.11.11.dist-info}/METADATA +1 -1
- {mdbq-3.11.10.dist-info → mdbq-3.11.11.dist-info}/RECORD +6 -6
- {mdbq-3.11.10.dist-info → mdbq-3.11.11.dist-info}/WHEEL +0 -0
- {mdbq-3.11.10.dist-info → mdbq-3.11.11.dist-info}/top_level.txt +0 -0
mdbq/__version__.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
VERSION = '3.11.
|
1
|
+
VERSION = '3.11.11'
|
mdbq/mysql/deduplicator.py
CHANGED
@@ -34,32 +34,6 @@ logger = mylogger.MyLogger(
|
|
34
34
|
class MySQLDeduplicator:
|
35
35
|
"""
|
36
36
|
MySQL数据去重
|
37
|
-
|
38
|
-
功能:
|
39
|
-
1. 自动检测并删除MySQL数据库中的重复数据
|
40
|
-
2. 支持全库扫描或指定表理
|
41
|
-
3. 支持多线程/多进程安全处理
|
42
|
-
4. 完善的错误处理和日志记录
|
43
|
-
|
44
|
-
使用示例:
|
45
|
-
deduplicator = MySQLDeduplicator(
|
46
|
-
username='root',
|
47
|
-
password='password',
|
48
|
-
host='localhost',
|
49
|
-
port=3306
|
50
|
-
)
|
51
|
-
|
52
|
-
# 全库去重
|
53
|
-
deduplicator.deduplicate_all()
|
54
|
-
|
55
|
-
# 指定数据库去重(多线程)
|
56
|
-
deduplicator.deduplicate_database('my_db', parallel=True)
|
57
|
-
|
58
|
-
# 指定表去重(使用特定列)
|
59
|
-
deduplicator.deduplicate_table('my_db', 'my_table', columns=['name', 'date'])
|
60
|
-
|
61
|
-
# 关闭连接
|
62
|
-
deduplicator.close()
|
63
37
|
"""
|
64
38
|
|
65
39
|
def __init__(
|
@@ -69,7 +43,7 @@ class MySQLDeduplicator:
|
|
69
43
|
host: str = 'localhost',
|
70
44
|
port: int = 3306,
|
71
45
|
charset: str = 'utf8mb4',
|
72
|
-
max_workers: int =
|
46
|
+
max_workers: int = 2,
|
73
47
|
batch_size: int = 1000,
|
74
48
|
skip_system_dbs: bool = True,
|
75
49
|
max_retries: int = 3,
|
@@ -121,27 +95,17 @@ class MySQLDeduplicator:
|
|
121
95
|
self.retry_interval = retry_interval
|
122
96
|
self.primary_key = primary_key
|
123
97
|
|
124
|
-
#
|
125
|
-
self.date_range = date_range
|
126
|
-
self.recent_month = recent_month
|
98
|
+
# 时间范围参数(只保留解析后的结果,去除冗余原始参数)
|
127
99
|
self.date_column = date_column
|
128
100
|
self._dedup_start_date = None
|
129
101
|
self._dedup_end_date = None
|
130
|
-
|
131
|
-
default_exclude = {'id'}
|
132
|
-
# exclude_columns 不传则排除: ['id', '更新时间']
|
133
|
-
if not exclude_columns:
|
134
|
-
self.exclude_columns = list(default_exclude | {'更新时间'})
|
135
|
-
else:
|
136
|
-
self.exclude_columns = list(set(exclude_columns) | default_exclude)
|
137
|
-
# 解析时间范围并智能校正date_range
|
138
|
-
if self.date_range and len(self.date_range) == 2:
|
102
|
+
if date_range and len(date_range) == 2:
|
139
103
|
try:
|
140
|
-
start, end =
|
104
|
+
start, end = date_range
|
141
105
|
start_dt = datetime.strptime(start, "%Y-%m-%d")
|
142
106
|
end_dt = datetime.strptime(end, "%Y-%m-%d")
|
143
107
|
if start_dt > end_dt:
|
144
|
-
logger.
|
108
|
+
logger.debug(
|
145
109
|
"date_range顺序不正确,自动交换开始和结束日期。",
|
146
110
|
{"start": start, "end": end}
|
147
111
|
)
|
@@ -151,13 +115,13 @@ class MySQLDeduplicator:
|
|
151
115
|
except Exception as e:
|
152
116
|
logger.error(
|
153
117
|
"date_range参数格式错误,应为['YYYY-MM-DD', 'YYYY-MM-DD'],已忽略时间范围。",
|
154
|
-
{"date_range":
|
118
|
+
{"date_range": date_range, "error": str(e)}
|
155
119
|
)
|
156
120
|
self._dedup_start_date = None
|
157
121
|
self._dedup_end_date = None
|
158
|
-
elif
|
122
|
+
elif recent_month:
|
159
123
|
today = datetime.today()
|
160
|
-
month = today.month -
|
124
|
+
month = today.month - recent_month
|
161
125
|
year = today.year
|
162
126
|
while month <= 0:
|
163
127
|
month += 12
|
@@ -165,16 +129,19 @@ class MySQLDeduplicator:
|
|
165
129
|
self._dedup_start_date = f"{year}-{month:02d}-01"
|
166
130
|
self._dedup_end_date = today.strftime("%Y-%m-%d")
|
167
131
|
|
132
|
+
# 排除列处理,直接合并去重
|
133
|
+
self.exclude_columns = list(set((exclude_columns or []) + ['id', '更新时间']))
|
134
|
+
|
168
135
|
# 线程安全控制
|
169
136
|
self._lock = threading.Lock()
|
170
137
|
self._processing_tables = set() # 正在处理的表集合
|
171
138
|
|
172
139
|
# 系统数据库列表
|
173
|
-
self.SYSTEM_DATABASES = {'information_schema', 'mysql', 'performance_schema', 'sys'}
|
140
|
+
self.SYSTEM_DATABASES = {'information_schema', 'mysql', 'performance_schema', 'sys', 'sakila'}
|
174
141
|
|
175
142
|
# 排除数据库和表的逻辑
|
176
|
-
self.exclude_databases = set(
|
177
|
-
self.exclude_tables = {k.lower(): set(
|
143
|
+
self.exclude_databases = set(db.lower() for db in (exclude_databases or []))
|
144
|
+
self.exclude_tables = {k.lower(): set(t.lower() for t in v) for k, v in (exclude_tables or {}).items()}
|
178
145
|
|
179
146
|
self.duplicate_keep_mode = duplicate_keep_mode if duplicate_keep_mode in ('keep_one', 'remove_all') else 'keep_one'
|
180
147
|
|
@@ -239,7 +206,7 @@ class MySQLDeduplicator:
|
|
239
206
|
@_retry_on_failure
|
240
207
|
def _get_databases(self) -> List[str]:
|
241
208
|
"""
|
242
|
-
获取所有非系统数据库列表,排除exclude_databases。
|
209
|
+
获取所有非系统数据库列表,排除 exclude_databases。
|
243
210
|
|
244
211
|
Returns:
|
245
212
|
List[str]: 数据库名列表。
|
@@ -256,7 +223,7 @@ class MySQLDeduplicator:
|
|
256
223
|
@_retry_on_failure
|
257
224
|
def _get_tables(self, database: str) -> List[str]:
|
258
225
|
"""
|
259
|
-
|
226
|
+
获取指定数据库的所有表名(排除 temp_ 前缀的临时表)。
|
260
227
|
|
261
228
|
Args:
|
262
229
|
database (str): 数据库名。
|
@@ -296,43 +263,11 @@ class MySQLDeduplicator:
|
|
296
263
|
return [row['COLUMN_NAME'] for row in cursor.fetchall()
|
297
264
|
if row['COLUMN_NAME'].lower() != self.primary_key.lower()]
|
298
265
|
|
299
|
-
def _acquire_table_lock(self, database: str, table: str) -> bool:
|
300
|
-
"""
|
301
|
-
获取表处理锁,防止并发处理同一张表。
|
302
|
-
|
303
|
-
Args:
|
304
|
-
database (str): 数据库名。
|
305
|
-
table (str): 表名。
|
306
|
-
Returns:
|
307
|
-
bool: 是否成功获取锁。
|
308
|
-
"""
|
309
|
-
key = f"{database}.{table}"
|
310
|
-
|
311
|
-
with self._lock:
|
312
|
-
if key in self._processing_tables:
|
313
|
-
logger.debug(f"表 {key} 正在被其他线程处理,跳过")
|
314
|
-
return False
|
315
|
-
self._processing_tables.add(key)
|
316
|
-
return True
|
317
|
-
|
318
|
-
def _release_table_lock(self, database: str, table: str) -> None:
|
319
|
-
"""
|
320
|
-
释放表处理锁。
|
321
|
-
|
322
|
-
Args:
|
323
|
-
database (str): 数据库名。
|
324
|
-
table (str): 表名。
|
325
|
-
"""
|
326
|
-
key = f"{database}.{table}"
|
327
|
-
|
328
|
-
with self._lock:
|
329
|
-
if key in self._processing_tables:
|
330
|
-
self._processing_tables.remove(key)
|
331
|
-
|
332
266
|
@_retry_on_failure
|
333
267
|
def _ensure_index(self, database: str, table: str, date_column: str) -> None:
|
334
268
|
"""
|
335
|
-
检查并为date_column自动创建索引(如果未存在)。
|
269
|
+
检查并为 date_column 自动创建索引(如果未存在)。
|
270
|
+
|
336
271
|
Args:
|
337
272
|
database (str): 数据库名。
|
338
273
|
table (str): 表名。
|
@@ -356,48 +291,21 @@ class MySQLDeduplicator:
|
|
356
291
|
try:
|
357
292
|
cursor.execute(f"CREATE INDEX `{safe_index_name}` ON `{database}`.`{table}` (`{date_column}`)")
|
358
293
|
conn.commit()
|
359
|
-
logger.
|
294
|
+
logger.debug('已自动为date_column创建索引', {"库": database, "表": table, "date_column": date_column, "索引名": safe_index_name})
|
360
295
|
except Exception as e:
|
361
296
|
logger.error('自动创建date_column索引失败', {"库": database, "表": table, "date_column": date_column, "异常": str(e)})
|
362
|
-
else:
|
363
|
-
logger.debug('date_column已存在索引', {"库": database, "表": table, "date_column": date_column})
|
364
|
-
|
365
|
-
def _row_generator(self, database, table, select_cols, select_where, batch_size=10000):
|
366
|
-
"""
|
367
|
-
生成器:分批拉取表数据,避免一次性加载全部数据到内存。
|
368
|
-
Args:
|
369
|
-
database (str): 数据库名。
|
370
|
-
table (str): 表名。
|
371
|
-
select_cols (str): 选择的列字符串。
|
372
|
-
select_where (str): where条件字符串。
|
373
|
-
batch_size (int): 每批拉取的行数。
|
374
|
-
Yields:
|
375
|
-
dict: 每行数据。
|
376
|
-
"""
|
377
|
-
offset = 0
|
378
|
-
while True:
|
379
|
-
sql = f"SELECT {select_cols} FROM `{database}`.`{table}` {select_where} LIMIT {batch_size} OFFSET {offset}"
|
380
|
-
with self._get_connection() as conn:
|
381
|
-
with conn.cursor() as cursor:
|
382
|
-
cursor.execute(sql)
|
383
|
-
rows = cursor.fetchall()
|
384
|
-
if not rows:
|
385
|
-
break
|
386
|
-
for row in rows:
|
387
|
-
yield row
|
388
|
-
if len(rows) < batch_size:
|
389
|
-
break
|
390
|
-
offset += batch_size
|
391
297
|
|
392
|
-
|
298
|
+
@_retry_on_failure
|
299
|
+
def _get_all_dates(self, database: str, table: str, date_column: str) -> List[str]:
|
393
300
|
"""
|
394
301
|
获取表中所有不同的日期分区(按天)。
|
302
|
+
|
395
303
|
Args:
|
396
304
|
database (str): 数据库名。
|
397
305
|
table (str): 表名。
|
398
306
|
date_column (str): 日期列名。
|
399
307
|
Returns:
|
400
|
-
List: 所有不同的日期(字符串)。
|
308
|
+
List[str]: 所有不同的日期(字符串)。
|
401
309
|
"""
|
402
310
|
sql = f"SELECT DISTINCT `{date_column}` FROM `{database}`.`{table}` ORDER BY `{date_column}` ASC"
|
403
311
|
with self._get_connection() as conn:
|
@@ -406,67 +314,165 @@ class MySQLDeduplicator:
|
|
406
314
|
return [row[date_column] for row in cursor.fetchall() if row[date_column] is not None]
|
407
315
|
|
408
316
|
def _deduplicate_table(
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
|
416
|
-
|
417
|
-
lock_table: bool = True
|
317
|
+
self,
|
318
|
+
database: str,
|
319
|
+
table: str,
|
320
|
+
columns: Optional[List[str]] = None,
|
321
|
+
dry_run: bool = False,
|
322
|
+
use_python_dedup: bool = False,
|
323
|
+
date_val: Optional[str] = None,
|
324
|
+
lock_table: bool = True
|
418
325
|
) -> Tuple[int, int]:
|
419
326
|
"""
|
420
|
-
|
421
|
-
|
422
|
-
|
423
|
-
|
327
|
+
执行单表单天去重。只处理 date_val 这一天的数据(如果有 date_column),否则全表。
|
328
|
+
|
329
|
+
Args:
|
330
|
+
database (str): 数据库名。
|
331
|
+
table (str): 表名。
|
332
|
+
columns (Optional[List[str]]): 指定去重列。
|
333
|
+
dry_run (bool): 是否为模拟运行。
|
334
|
+
use_python_dedup (bool): 是否用 Python 方式去重。
|
335
|
+
date_val (Optional[str]): 指定处理的日期(如有 date_column)。
|
336
|
+
lock_table (bool): 是否加表级锁。
|
337
|
+
Returns:
|
338
|
+
Tuple[int, int]: (重复组数, 实际删除行数)
|
424
339
|
"""
|
425
340
|
if lock_table and not self._acquire_table_lock(database, table):
|
426
341
|
return (0, 0)
|
427
342
|
temp_table = None
|
428
343
|
try:
|
429
|
-
# 获取实际列名
|
430
344
|
all_columns = self._get_table_columns(database, table)
|
431
345
|
all_columns_lower = [col.lower() for col in all_columns]
|
432
346
|
exclude_columns_lower = [col.lower() for col in getattr(self, 'exclude_columns', [])]
|
433
347
|
time_col = self.date_column
|
434
348
|
time_col_lower = time_col.lower() if time_col else None
|
435
|
-
# 1. 跳过date_column在exclude_columns的情况
|
436
349
|
if time_col_lower and time_col_lower in exclude_columns_lower:
|
437
350
|
logger.warning('date_column在exclude_columns中,跳过该表', {"库": database, "表": table, "date_column": time_col, "exclude_columns": self.exclude_columns})
|
438
351
|
return (0, 0)
|
439
|
-
# 2. 判断表是否包含date_column
|
440
352
|
has_time_col = time_col_lower in all_columns_lower if time_col_lower else False
|
441
|
-
|
442
|
-
|
353
|
+
|
354
|
+
# 只要有date_column,始终分天处理(本函数只处理一天)
|
355
|
+
if has_time_col and date_val is not None:
|
443
356
|
self._ensure_index(database, table, time_col)
|
444
|
-
#
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
|
463
|
-
|
464
|
-
if
|
465
|
-
|
466
|
-
|
467
|
-
|
468
|
-
|
469
|
-
|
357
|
+
# 获取去重列
|
358
|
+
use_columns = columns or all_columns
|
359
|
+
use_columns = [col for col in use_columns if col.lower() in all_columns_lower and col.lower() not in exclude_columns_lower]
|
360
|
+
invalid_columns = set([col for col in (columns or []) if col.lower() not in all_columns_lower])
|
361
|
+
if invalid_columns:
|
362
|
+
logger.warning('不存在的列', {"库": database, "表": table, "不存在以下列": invalid_columns, 'func': sys._getframe().f_code.co_name})
|
363
|
+
if not use_columns:
|
364
|
+
logger.error('没有有效的去重列', {"库": database, "表": table, "func": sys._getframe().f_code.co_name})
|
365
|
+
return (0, 0)
|
366
|
+
pk = self.primary_key
|
367
|
+
pk_real = next((c for c in all_columns if c.lower() == pk.lower()), pk)
|
368
|
+
where_sql = f"t.`{time_col}` = '{date_val}'"
|
369
|
+
# 获取原始数据总量(只统计当天数据)
|
370
|
+
with self._get_connection() as conn:
|
371
|
+
with conn.cursor() as cursor:
|
372
|
+
count_where = f"WHERE `{time_col}` = '{date_val}'"
|
373
|
+
count_sql = f"SELECT COUNT(*) as cnt FROM `{database}`.`{table}` {count_where}"
|
374
|
+
logger.debug('执行SQL', {'sql': count_sql})
|
375
|
+
cursor.execute(count_sql)
|
376
|
+
total_count_row = cursor.fetchone()
|
377
|
+
total_count = total_count_row['cnt'] if total_count_row and 'cnt' in total_count_row else 0
|
378
|
+
logger.debug('执行', {"库": database, "表": table, "开始处理数据量": total_count, 'func': sys._getframe().f_code.co_name, "数据日期": date_val})
|
379
|
+
column_list = ', '.join([f'`{col}`' for col in use_columns])
|
380
|
+
|
381
|
+
# 用Python查找重复
|
382
|
+
if use_python_dedup:
|
383
|
+
select_cols = f'`{pk_real}`,' + ','.join([f'`{col}`' for col in use_columns])
|
384
|
+
select_where = f"WHERE `{time_col}` = '{date_val}'"
|
385
|
+
grouped = defaultdict(list)
|
386
|
+
for row in self._row_generator(database, table, select_cols, select_where, self.batch_size):
|
387
|
+
key = tuple(row[col] for col in use_columns)
|
388
|
+
grouped[key].append(row[pk_real])
|
389
|
+
dup_count = 0
|
390
|
+
del_ids = []
|
391
|
+
for ids in grouped.values():
|
392
|
+
if len(ids) > 1:
|
393
|
+
dup_count += 1
|
394
|
+
del_ids.extend(ids[1:])
|
395
|
+
affected_rows = 0
|
396
|
+
if not dry_run and del_ids:
|
397
|
+
with self._get_connection() as conn:
|
398
|
+
with conn.cursor() as cursor:
|
399
|
+
for i in range(0, len(del_ids), self.batch_size):
|
400
|
+
batch_ids = del_ids[i:i+self.batch_size]
|
401
|
+
del_ids_str = ','.join([str(i) for i in batch_ids])
|
402
|
+
delete_sql = f"DELETE FROM `{database}`.`{table}` WHERE `{pk_real}` IN ({del_ids_str})"
|
403
|
+
cursor.execute(delete_sql)
|
404
|
+
batch_deleted = cursor.rowcount
|
405
|
+
affected_rows += batch_deleted
|
406
|
+
conn.commit()
|
407
|
+
logger.debug('去重完成', {"库": database, "表": table, "数据量": total_count, "重复组": dup_count, "实际删除": affected_rows, "去重方式": "Python", "数据处理": self.duplicate_keep_mode, "数据日期": date_val})
|
408
|
+
return (dup_count, affected_rows)
|
409
|
+
# SQL方式查找重复
|
410
|
+
temp_table = self._make_temp_table_name(table)
|
411
|
+
drop_temp_sql = f"DROP TABLE IF EXISTS `{database}`.`{temp_table}`"
|
412
|
+
create_temp_where = f"WHERE `{time_col}` = '{date_val}'"
|
413
|
+
create_temp_sql = f"""
|
414
|
+
CREATE TABLE `{database}`.`{temp_table}` AS
|
415
|
+
SELECT MIN(`{pk_real}`) as `min_id`, {column_list}, COUNT(*) as `dup_count`
|
416
|
+
FROM `{database}`.`{table}`
|
417
|
+
{create_temp_where}
|
418
|
+
GROUP BY {column_list}
|
419
|
+
HAVING COUNT(*) > 1
|
420
|
+
"""
|
421
|
+
with self._get_connection() as conn:
|
422
|
+
with conn.cursor() as cursor:
|
423
|
+
logger.debug('创建临时表SQL', {'sql': create_temp_sql})
|
424
|
+
cursor.execute(create_temp_sql)
|
425
|
+
cursor.execute(f"SELECT COUNT(*) as cnt FROM `{database}`.`{temp_table}`")
|
426
|
+
dup_count_row = cursor.fetchone()
|
427
|
+
dup_count = dup_count_row['cnt'] if dup_count_row and 'cnt' in dup_count_row else 0
|
428
|
+
if dup_count == 0:
|
429
|
+
logger.debug('没有重复数据', {"库": database, "表": table, "数据量": total_count, "数据日期": date_val})
|
430
|
+
cursor.execute(drop_temp_sql)
|
431
|
+
conn.commit()
|
432
|
+
return (0, 0)
|
433
|
+
affected_rows = 0
|
434
|
+
if not dry_run:
|
435
|
+
while True:
|
436
|
+
where_clauses = []
|
437
|
+
if self.duplicate_keep_mode == 'keep_one':
|
438
|
+
where_clauses.append(f"t.`{pk_real}` <> tmp.`min_id`")
|
439
|
+
if where_sql.strip():
|
440
|
+
where_clauses.append(where_sql.strip())
|
441
|
+
where_full = "WHERE " + " AND ".join(where_clauses) if where_clauses else ""
|
442
|
+
find_dup_ids_sql = f"""
|
443
|
+
SELECT t.`{pk_real}` as del_id
|
444
|
+
FROM `{database}`.`{table}` t
|
445
|
+
JOIN `{database}`.`{temp_table}` tmp
|
446
|
+
ON {' AND '.join([f't.`{col}` <=> tmp.`{col}`' for col in use_columns])}
|
447
|
+
{where_full}
|
448
|
+
LIMIT {self.batch_size}
|
449
|
+
"""
|
450
|
+
logger.debug('查找待删除重复id SQL', {'sql': find_dup_ids_sql})
|
451
|
+
cursor.execute(find_dup_ids_sql)
|
452
|
+
del_ids = [row['del_id'] for row in cursor.fetchall()]
|
453
|
+
if not del_ids:
|
454
|
+
break
|
455
|
+
del_ids_str = ','.join([str(i) for i in del_ids])
|
456
|
+
delete_sql = f"DELETE FROM `{database}`.`{table}` WHERE `{pk_real}` IN ({del_ids_str})"
|
457
|
+
logger.debug('按id批量删除SQL', {'sql': delete_sql, 'ids': del_ids})
|
458
|
+
cursor.execute(delete_sql)
|
459
|
+
batch_deleted = cursor.rowcount
|
460
|
+
affected_rows += batch_deleted
|
461
|
+
conn.commit()
|
462
|
+
if batch_deleted == 0:
|
463
|
+
logger.warning('检测到未能删除任何数据,强制跳出循环,防止假死', {"库": database, "表": table})
|
464
|
+
break
|
465
|
+
if batch_deleted < self.batch_size:
|
466
|
+
break
|
467
|
+
logger.info('操作删除', {"库": database, "表": table, "数据量": total_count, "重复组": dup_count, "实际删除": affected_rows, "去重方式": "SQL", "数据处理": self.duplicate_keep_mode, "数据日期": date_val})
|
468
|
+
else:
|
469
|
+
logger.debug('dry_run模式,不执行删除', {"库": database, "表": table, "重复组": dup_count})
|
470
|
+
affected_rows = 0
|
471
|
+
cursor.execute(drop_temp_sql)
|
472
|
+
conn.commit()
|
473
|
+
return (dup_count, affected_rows)
|
474
|
+
# 没有date_column,处理全表
|
475
|
+
# ...existing code for full-table deduplication (as before, but without recursion)...
|
470
476
|
use_columns = columns or all_columns
|
471
477
|
use_columns = [col for col in use_columns if col.lower() in all_columns_lower and col.lower() not in exclude_columns_lower]
|
472
478
|
invalid_columns = set([col for col in (columns or []) if col.lower() not in all_columns_lower])
|
@@ -477,66 +483,49 @@ class MySQLDeduplicator:
|
|
477
483
|
return (0, 0)
|
478
484
|
pk = self.primary_key
|
479
485
|
pk_real = next((c for c in all_columns if c.lower() == pk.lower()), pk)
|
480
|
-
#
|
481
|
-
where_sql = ''
|
482
|
-
if has_time_col and dedup_start_date and dedup_end_date:
|
483
|
-
where_sql = f"t.`{time_col}` >= '{dedup_start_date}' AND t.`{time_col}` <= '{dedup_end_date}'"
|
484
|
-
# 获取原始数据总量(只统计区间内数据)
|
486
|
+
# 获取原始数据总量
|
485
487
|
with self._get_connection() as conn:
|
486
488
|
with conn.cursor() as cursor:
|
487
|
-
|
488
|
-
count_sql = f"SELECT COUNT(*) as cnt FROM `{database}`.`{table}` {count_where}"
|
489
|
+
count_sql = f"SELECT COUNT(*) as cnt FROM `{database}`.`{table}`"
|
489
490
|
logger.debug('执行SQL', {'sql': count_sql})
|
490
491
|
cursor.execute(count_sql)
|
491
492
|
total_count_row = cursor.fetchone()
|
492
493
|
total_count = total_count_row['cnt'] if total_count_row and 'cnt' in total_count_row else 0
|
493
|
-
logger.
|
494
|
+
logger.debug('执行', {"库": database, "表": table, "开始处理数据量": total_count, 'func': sys._getframe().f_code.co_name})
|
494
495
|
column_list = ', '.join([f'`{col}`' for col in use_columns])
|
495
|
-
|
496
|
-
# 用Python查找重复
|
497
496
|
if use_python_dedup:
|
498
|
-
# 1. 拉取所有数据(生成器分批拉取)
|
499
497
|
select_cols = f'`{pk_real}`,' + ','.join([f'`{col}`' for col in use_columns])
|
500
|
-
select_where =
|
501
|
-
select_sql = f"SELECT {select_cols} FROM `{database}`.`{table}` {select_where}"
|
502
|
-
logger.debug('用Python查找重复,拉取数据SQL', {'sql': select_sql})
|
503
|
-
# 用生成器分批拉取
|
498
|
+
select_where = ''
|
504
499
|
grouped = defaultdict(list)
|
505
500
|
for row in self._row_generator(database, table, select_cols, select_where, self.batch_size):
|
506
501
|
key = tuple(row[col] for col in use_columns)
|
507
502
|
grouped[key].append(row[pk_real])
|
508
|
-
# 2. 统计重复组和待删除id
|
509
503
|
dup_count = 0
|
510
504
|
del_ids = []
|
511
505
|
for ids in grouped.values():
|
512
506
|
if len(ids) > 1:
|
513
507
|
dup_count += 1
|
514
|
-
del_ids.extend(ids[1:])
|
508
|
+
del_ids.extend(ids[1:])
|
515
509
|
affected_rows = 0
|
516
510
|
if not dry_run and del_ids:
|
517
511
|
with self._get_connection() as conn:
|
518
512
|
with conn.cursor() as cursor:
|
519
513
|
for i in range(0, len(del_ids), self.batch_size):
|
520
|
-
|
521
|
-
del_ids_str = ','.join([str(i) for i in
|
514
|
+
batch_ids = del_ids[i:i+self.batch_size]
|
515
|
+
del_ids_str = ','.join([str(i) for i in batch_ids])
|
522
516
|
delete_sql = f"DELETE FROM `{database}`.`{table}` WHERE `{pk_real}` IN ({del_ids_str})"
|
523
|
-
logger.debug('用Python分批删除SQL', {'sql': delete_sql, 'ids': batch})
|
524
517
|
cursor.execute(delete_sql)
|
525
518
|
batch_deleted = cursor.rowcount
|
526
519
|
affected_rows += batch_deleted
|
527
520
|
conn.commit()
|
528
|
-
logger.
|
521
|
+
logger.debug('去重完成', {"库": database, "表": table, "数据量": total_count, "重复组": dup_count, "实际删除": affected_rows, "去重方式": "Python", "数据处理": self.duplicate_keep_mode})
|
529
522
|
return (dup_count, affected_rows)
|
530
|
-
# SQL方式查找重复
|
531
523
|
temp_table = self._make_temp_table_name(table)
|
532
524
|
drop_temp_sql = f"DROP TABLE IF EXISTS `{database}`.`{temp_table}`"
|
533
|
-
# 创建临时表时加where条件
|
534
|
-
create_temp_where = f"WHERE `{time_col}` >= '{dedup_start_date}' AND `{time_col}` <= '{dedup_end_date}'" if has_time_col and dedup_start_date and dedup_end_date else ''
|
535
525
|
create_temp_sql = f"""
|
536
526
|
CREATE TABLE `{database}`.`{temp_table}` AS
|
537
527
|
SELECT MIN(`{pk_real}`) as `min_id`, {column_list}, COUNT(*) as `dup_count`
|
538
528
|
FROM `{database}`.`{table}`
|
539
|
-
{create_temp_where}
|
540
529
|
GROUP BY {column_list}
|
541
530
|
HAVING COUNT(*) > 1
|
542
531
|
"""
|
@@ -548,7 +537,7 @@ class MySQLDeduplicator:
|
|
548
537
|
dup_count_row = cursor.fetchone()
|
549
538
|
dup_count = dup_count_row['cnt'] if dup_count_row and 'cnt' in dup_count_row else 0
|
550
539
|
if dup_count == 0:
|
551
|
-
logger.info('没有重复数据', {"库": database, "表": table, "数据量": total_count
|
540
|
+
logger.info('没有重复数据', {"库": database, "表": table, "数据量": total_count})
|
552
541
|
cursor.execute(drop_temp_sql)
|
553
542
|
conn.commit()
|
554
543
|
return (0, 0)
|
@@ -558,8 +547,6 @@ class MySQLDeduplicator:
|
|
558
547
|
where_clauses = []
|
559
548
|
if self.duplicate_keep_mode == 'keep_one':
|
560
549
|
where_clauses.append(f"t.`{pk_real}` <> tmp.`min_id`")
|
561
|
-
if where_sql.strip():
|
562
|
-
where_clauses.append(where_sql.strip())
|
563
550
|
where_full = "WHERE " + " AND ".join(where_clauses) if where_clauses else ""
|
564
551
|
find_dup_ids_sql = f"""
|
565
552
|
SELECT t.`{pk_real}` as del_id
|
@@ -586,7 +573,7 @@ class MySQLDeduplicator:
|
|
586
573
|
break
|
587
574
|
if batch_deleted < self.batch_size:
|
588
575
|
break
|
589
|
-
logger.info('操作删除', {"库": database, "表": table, "数据量": total_count, "重复组": dup_count, "实际删除": affected_rows, "去重方式": "SQL", "数据处理": self.duplicate_keep_mode
|
576
|
+
logger.info('操作删除', {"库": database, "表": table, "数据量": total_count, "重复组": dup_count, "实际删除": affected_rows, "去重方式": "SQL", "数据处理": self.duplicate_keep_mode})
|
590
577
|
else:
|
591
578
|
logger.debug('dry_run模式,不执行删除', {"库": database, "表": table, "重复组": dup_count})
|
592
579
|
affected_rows = 0
|
@@ -595,7 +582,6 @@ class MySQLDeduplicator:
|
|
595
582
|
return (dup_count, affected_rows)
|
596
583
|
except Exception as e:
|
597
584
|
logger.error('异常', {"库": database, "表": table, "异常": str(e), 'func': sys._getframe().f_code.co_name, 'traceback': repr(e)})
|
598
|
-
# 异常时也要清理临时表
|
599
585
|
if temp_table:
|
600
586
|
try:
|
601
587
|
with self._get_connection() as conn:
|
@@ -611,26 +597,26 @@ class MySQLDeduplicator:
|
|
611
597
|
self._release_table_lock(database, table)
|
612
598
|
|
613
599
|
def deduplicate_table(
|
614
|
-
|
615
|
-
|
616
|
-
|
617
|
-
|
618
|
-
|
619
|
-
|
620
|
-
|
600
|
+
self,
|
601
|
+
database: str,
|
602
|
+
table: str,
|
603
|
+
columns: Optional[List[str]] = None,
|
604
|
+
dry_run: bool = False,
|
605
|
+
reorder_id: bool = False,
|
606
|
+
use_python_dedup: bool = True
|
621
607
|
) -> Tuple[int, int]:
|
622
608
|
"""
|
623
|
-
|
609
|
+
对指定表进行去重。始终按天分区(如有 date_column),否则全表。
|
624
610
|
|
625
611
|
Args:
|
626
612
|
database (str): 数据库名。
|
627
613
|
table (str): 表名。
|
628
|
-
columns (Optional[List[str]]):
|
629
|
-
dry_run (bool):
|
630
|
-
reorder_id (bool):
|
631
|
-
use_python_dedup (bool): 是否用Python
|
614
|
+
columns (Optional[List[str]]): 指定去重列。
|
615
|
+
dry_run (bool): 是否为模拟运行。
|
616
|
+
reorder_id (bool): 去重后是否自动重排 id 列。
|
617
|
+
use_python_dedup (bool): 是否用 Python 方式去重。
|
632
618
|
Returns:
|
633
|
-
Tuple[int, int]: (重复组数, 实际删除行数)
|
619
|
+
Tuple[int, int]: (重复组数, 实际删除行数)
|
634
620
|
"""
|
635
621
|
if database.lower() in self.exclude_tables and table.lower() in self.exclude_tables[database.lower()]:
|
636
622
|
logger.info('表被排除', {"库": database, "表": table, "操作": "跳过"})
|
@@ -639,10 +625,73 @@ class MySQLDeduplicator:
|
|
639
625
|
if not self._check_table_exists(database, table):
|
640
626
|
logger.warning('表不存在', {"库": database, "表": table, "warning": "跳过"})
|
641
627
|
return (0, 0)
|
642
|
-
logger.info('单表开始', {
|
643
|
-
|
644
|
-
|
645
|
-
|
628
|
+
logger.info('单表开始', {
|
629
|
+
"库": database,
|
630
|
+
"表": table,
|
631
|
+
"参数": {
|
632
|
+
"指定去重列": columns,
|
633
|
+
"去重方式": "Python" if use_python_dedup else "SQL",
|
634
|
+
"数据处理": self.duplicate_keep_mode,
|
635
|
+
"模拟运行": dry_run,
|
636
|
+
'排除列': self.exclude_columns,
|
637
|
+
}})
|
638
|
+
all_columns = self._get_table_columns(database, table)
|
639
|
+
all_columns_lower = [col.lower() for col in all_columns]
|
640
|
+
time_col = self.date_column
|
641
|
+
time_col_lower = time_col.lower() if time_col else None
|
642
|
+
has_time_col = time_col_lower in all_columns_lower if time_col_lower else False
|
643
|
+
if has_time_col:
|
644
|
+
self._ensure_index(database, table, time_col)
|
645
|
+
all_dates = self._get_all_dates(database, table, time_col)
|
646
|
+
# 按date_range/recent_month筛选日期
|
647
|
+
start_date = self._dedup_start_date
|
648
|
+
end_date = self._dedup_end_date
|
649
|
+
if start_date and end_date:
|
650
|
+
all_dates = [d for d in all_dates if str(start_date) <= str(d) <= str(end_date)]
|
651
|
+
if not all_dates:
|
652
|
+
logger.info('无可处理日期', {"库": database, "表": table})
|
653
|
+
return (0, 0)
|
654
|
+
total_dup = 0
|
655
|
+
total_del = 0
|
656
|
+
def process_date(date_val):
|
657
|
+
try:
|
658
|
+
logger.debug('按天分区去重', {"库": database, "表": table, "日期": date_val})
|
659
|
+
dup_count, affected_rows = self._deduplicate_table(
|
660
|
+
database, table, columns, dry_run, use_python_dedup,
|
661
|
+
date_val=date_val, lock_table=False
|
662
|
+
)
|
663
|
+
return (dup_count, affected_rows, date_val, None)
|
664
|
+
except Exception as e:
|
665
|
+
logger.error('分区去重异常', {"库": database, "表": table, "日期": date_val, "异常": str(e), "func": sys._getframe().f_code.co_name})
|
666
|
+
return (0, 0, date_val, str(e))
|
667
|
+
if self.max_workers > 1:
|
668
|
+
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
669
|
+
future_to_date = {executor.submit(process_date, date_val): date_val for date_val in all_dates}
|
670
|
+
for future in concurrent.futures.as_completed(future_to_date):
|
671
|
+
dup_count, affected_rows, date_val, err = future.result()
|
672
|
+
if err:
|
673
|
+
logger.warning('分区处理失败', {"库": database, "表": table, "日期": date_val, "异常": err, "func": sys._getframe().f_code.co_name})
|
674
|
+
total_dup += dup_count
|
675
|
+
total_del += affected_rows
|
676
|
+
else:
|
677
|
+
for date_val in all_dates:
|
678
|
+
dup_count, affected_rows, _, err = process_date(date_val)
|
679
|
+
if err:
|
680
|
+
logger.warning('分区处理失败', {"库": database, "表": table, "日期": date_val, "异常": err, "func": sys._getframe().f_code.co_name})
|
681
|
+
total_dup += dup_count
|
682
|
+
total_del += affected_rows
|
683
|
+
logger.info('单表完成', {"库": database, "表": table, "结果[重复, 删除]": (total_dup, total_del), '日期范围': f"{start_date} - {end_date}"})
|
684
|
+
# 自动重排id列(仅当有实际删除时且reorder_id为True)
|
685
|
+
if reorder_id and total_del > 0:
|
686
|
+
try:
|
687
|
+
reorder_ok = self.reorder_id_column(database, table, id_column=self.primary_key, dry_run=dry_run)
|
688
|
+
logger.info('自动重排id列完成', {"库": database, "表": table, "结果": reorder_ok})
|
689
|
+
except Exception as e:
|
690
|
+
logger.error('自动重排id列异常', {"库": database, "表": table, "异常": str(e)})
|
691
|
+
return (total_dup, total_del)
|
692
|
+
# 没有date_column,直接全表去重
|
693
|
+
result = self._deduplicate_table(database, table, columns, dry_run, use_python_dedup, date_val=None)
|
694
|
+
logger.info('单表完成', {"库": database, "表": table, "结果[重复, 删除]": result, '日期范围': '全表'})
|
646
695
|
dup_count, affected_rows = result
|
647
696
|
if reorder_id and affected_rows > 0:
|
648
697
|
try:
|
@@ -656,28 +705,28 @@ class MySQLDeduplicator:
|
|
656
705
|
return (0, 0)
|
657
706
|
|
658
707
|
def deduplicate_database(
|
659
|
-
|
660
|
-
|
661
|
-
|
662
|
-
|
663
|
-
|
664
|
-
|
665
|
-
|
666
|
-
|
708
|
+
self,
|
709
|
+
database: str,
|
710
|
+
tables: Optional[List[str]] = None,
|
711
|
+
columns_map: Optional[Dict[str, List[str]]] = None,
|
712
|
+
dry_run: bool = False,
|
713
|
+
parallel: bool = False,
|
714
|
+
reorder_id: bool = False,
|
715
|
+
use_python_dedup: bool = True
|
667
716
|
) -> Dict[str, Tuple[int, int]]:
|
668
717
|
"""
|
669
|
-
|
718
|
+
对指定数据库的所有表进行去重。调用 deduplicate_table,自动适配分天。
|
670
719
|
|
671
720
|
Args:
|
672
721
|
database (str): 数据库名。
|
673
|
-
tables (Optional[List[str]]):
|
674
|
-
columns_map (Optional[Dict[str, List[str]]]):
|
722
|
+
tables (Optional[List[str]]): 指定表名列表。
|
723
|
+
columns_map (Optional[Dict[str, List[str]]]): 每个表的去重列映射。
|
675
724
|
dry_run (bool): 是否为模拟运行。
|
676
|
-
parallel (bool):
|
677
|
-
reorder_id (bool):
|
678
|
-
use_python_dedup (bool): 是否用Python
|
725
|
+
parallel (bool): 是否并行处理表。
|
726
|
+
reorder_id (bool): 去重后是否自动重排 id 列。
|
727
|
+
use_python_dedup (bool): 是否用 Python 方式去重。
|
679
728
|
Returns:
|
680
|
-
Dict[str, Tuple[int, int]]: {表名: (重复组数, 实际删除行数)}
|
729
|
+
Dict[str, Tuple[int, int]]: {表名: (重复组数, 实际删除行数)}
|
681
730
|
"""
|
682
731
|
results = {}
|
683
732
|
try:
|
@@ -693,8 +742,6 @@ class MySQLDeduplicator:
|
|
693
742
|
return results
|
694
743
|
logger.info('库统计', {"库": database, "表数量": len(target_tables), "表列表": target_tables})
|
695
744
|
if parallel and self.max_workers > 1:
|
696
|
-
logger.debug('并行处理表', {'库': database, 'max_workers': self.max_workers})
|
697
|
-
# 使用线程池并行处理
|
698
745
|
with concurrent.futures.ThreadPoolExecutor(
|
699
746
|
max_workers=self.max_workers
|
700
747
|
) as executor:
|
@@ -715,8 +762,6 @@ class MySQLDeduplicator:
|
|
715
762
|
logger.error('异常', {"库": database, "表": table, "error": str(e), 'traceback': repr(e)})
|
716
763
|
results[table] = (0, 0)
|
717
764
|
else:
|
718
|
-
logger.debug('串行处理表', {'库': database})
|
719
|
-
# 串行处理
|
720
765
|
for table in target_tables:
|
721
766
|
columns = columns_map.get(table) if columns_map else None
|
722
767
|
dup_count, affected_rows = self.deduplicate_table(
|
@@ -725,35 +770,35 @@ class MySQLDeduplicator:
|
|
725
770
|
results[table] = (dup_count, affected_rows)
|
726
771
|
total_dup = sum(r[0] for r in results.values())
|
727
772
|
total_del = sum(r[1] for r in results.values())
|
728
|
-
logger.info('
|
773
|
+
logger.info('库完成', {"库": database, "重复组": total_dup, "总删除行": total_del, "详细结果": results})
|
729
774
|
return results
|
730
775
|
except Exception as e:
|
731
776
|
logger.error('发生全局错误', {"库": database, 'func': sys._getframe().f_code.co_name, "error": str(e), 'traceback': repr(e)})
|
732
777
|
return results
|
733
778
|
|
734
779
|
def deduplicate_all(
|
735
|
-
|
736
|
-
|
737
|
-
|
738
|
-
|
739
|
-
|
740
|
-
|
741
|
-
|
742
|
-
|
780
|
+
self,
|
781
|
+
databases: Optional[List[str]] = None,
|
782
|
+
tables_map: Optional[Dict[str, List[str]]] = None,
|
783
|
+
columns_map: Optional[Dict[str, Dict[str, List[str]]]] = None,
|
784
|
+
dry_run: bool = False,
|
785
|
+
parallel: bool = False,
|
786
|
+
reorder_id: bool = False,
|
787
|
+
use_python_dedup: bool = True
|
743
788
|
) -> Dict[str, Dict[str, Tuple[int, int]]]:
|
744
789
|
"""
|
745
|
-
|
790
|
+
对所有数据库进行去重。调用 deduplicate_database,自动适配分天。
|
746
791
|
|
747
792
|
Args:
|
748
|
-
databases (Optional[List[str]]):
|
749
|
-
tables_map (Optional[Dict[str, List[str]]]):
|
750
|
-
columns_map (Optional[Dict[str, Dict[str, List[str]]]]):
|
751
|
-
dry_run (bool):
|
752
|
-
parallel (bool):
|
753
|
-
reorder_id (bool):
|
754
|
-
use_python_dedup (bool): 是否用Python
|
793
|
+
databases (Optional[List[str]]): 指定数据库名列表。
|
794
|
+
tables_map (Optional[Dict[str, List[str]]]): 每个库的表名映射。
|
795
|
+
columns_map (Optional[Dict[str, Dict[str, List[str]]]]): 每个库每个表的去重列映射。
|
796
|
+
dry_run (bool): 是否为模拟运行。
|
797
|
+
parallel (bool): 是否并行处理库。
|
798
|
+
reorder_id (bool): 去重后是否自动重排 id 列。
|
799
|
+
use_python_dedup (bool): 是否用 Python 方式去重。
|
755
800
|
Returns:
|
756
|
-
Dict[str, Dict[str, Tuple[int, int]]]:
|
801
|
+
Dict[str, Dict[str, Tuple[int, int]]]: {库: {表: (重复组数, 实际删除行数)}}
|
757
802
|
"""
|
758
803
|
all_results: Dict[str, Dict[str, Tuple[int, int]]] = defaultdict(dict)
|
759
804
|
try:
|
@@ -763,9 +808,18 @@ class MySQLDeduplicator:
|
|
763
808
|
if not target_dbs:
|
764
809
|
logger.warning('没有可处理的数据库')
|
765
810
|
return all_results
|
766
|
-
logger.info('全局开始', {
|
811
|
+
logger.info('全局开始', {
|
812
|
+
"数据库数量": len(target_dbs),
|
813
|
+
"数据库列表": target_dbs,
|
814
|
+
"参数": {
|
815
|
+
"模拟运行": dry_run,
|
816
|
+
"并行处理": parallel,
|
817
|
+
'排除列': self.exclude_columns,
|
818
|
+
'重排id': reorder_id,
|
819
|
+
'use_python_dedup': use_python_dedup
|
820
|
+
},
|
821
|
+
})
|
767
822
|
if parallel and self.max_workers > 1:
|
768
|
-
# 使用线程池并行处理多个数据库
|
769
823
|
with concurrent.futures.ThreadPoolExecutor(
|
770
824
|
max_workers=self.max_workers
|
771
825
|
) as executor:
|
@@ -786,7 +840,6 @@ class MySQLDeduplicator:
|
|
786
840
|
logger.error('异常', {"库": db, "error": str(e), 'traceback': repr(e)})
|
787
841
|
all_results[db] = {}
|
788
842
|
else:
|
789
|
-
# 串行处理数据库
|
790
843
|
for db in target_dbs:
|
791
844
|
tables = tables_map.get(db) if tables_map else None
|
792
845
|
db_columns_map = columns_map.get(db) if columns_map else None
|
@@ -802,7 +855,18 @@ class MySQLDeduplicator:
|
|
802
855
|
r[1] for db in all_results.values()
|
803
856
|
for r in db.values()
|
804
857
|
)
|
805
|
-
logger.info('全局完成', {
|
858
|
+
logger.info('全局完成', {
|
859
|
+
"总重复组": total_dup,
|
860
|
+
"总删除行": total_del,
|
861
|
+
"参数": {
|
862
|
+
"模拟运行": dry_run,
|
863
|
+
"并行处理": parallel,
|
864
|
+
'排除列': self.exclude_columns,
|
865
|
+
'重排id': reorder_id,
|
866
|
+
'use_python_dedup': use_python_dedup
|
867
|
+
},
|
868
|
+
"详细结果": dict(all_results)
|
869
|
+
})
|
806
870
|
return all_results
|
807
871
|
except Exception as e:
|
808
872
|
logger.error('异常', {"error": str(e), 'traceback': repr(e)})
|
@@ -847,6 +911,31 @@ class MySQLDeduplicator:
|
|
847
911
|
cursor.execute(sql, (database, table))
|
848
912
|
return bool(cursor.fetchone())
|
849
913
|
|
914
|
+
@_retry_on_failure
|
915
|
+
def _get_table_info(self, database: str, table: str, id_column: str = None):
|
916
|
+
"""
|
917
|
+
获取表的所有列名、主键列名列表、指定id列是否为主键。
|
918
|
+
Args:
|
919
|
+
database (str): 数据库名。
|
920
|
+
table (str): 表名。
|
921
|
+
id_column (str): id列名,默认使用self.primary_key。
|
922
|
+
Returns:
|
923
|
+
Tuple[List[str], List[str], bool]: (所有列名, 主键列名, id列是否为主键)
|
924
|
+
"""
|
925
|
+
id_column = id_column or self.primary_key
|
926
|
+
with self._get_connection() as conn:
|
927
|
+
with conn.cursor() as cursor:
|
928
|
+
cursor.execute("""
|
929
|
+
SELECT COLUMN_NAME, COLUMN_KEY
|
930
|
+
FROM INFORMATION_SCHEMA.COLUMNS
|
931
|
+
WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s
|
932
|
+
""", (database, table))
|
933
|
+
columns_info = cursor.fetchall()
|
934
|
+
columns = [row['COLUMN_NAME'] for row in columns_info]
|
935
|
+
pk_cols = [row['COLUMN_NAME'] for row in columns_info if row['COLUMN_KEY'] == 'PRI']
|
936
|
+
id_is_pk = any(row['COLUMN_NAME'].lower() == id_column.lower() and row['COLUMN_KEY'] in ('PRI', 'UNI') for row in columns_info)
|
937
|
+
return columns, pk_cols, id_is_pk
|
938
|
+
|
850
939
|
def close(self) -> None:
|
851
940
|
"""
|
852
941
|
关闭连接池。
|
@@ -895,15 +984,16 @@ class MySQLDeduplicator:
|
|
895
984
|
auto_drop_backup: bool = True
|
896
985
|
) -> Any:
|
897
986
|
"""
|
898
|
-
安全重排指定表或指定库下所有表的id列为顺序自增(1,2,3...)。
|
987
|
+
安全重排指定表或指定库下所有表的 id 列为顺序自增(1,2,3...)。
|
988
|
+
|
899
989
|
Args:
|
900
|
-
database (str):
|
901
|
-
table (Optional[str]): 表名,None
|
902
|
-
id_column (str): id列名,默认"id"
|
903
|
-
dry_run (bool):
|
904
|
-
auto_drop_backup (bool):
|
990
|
+
database (str): 数据库名。
|
991
|
+
table (Optional[str]): 表名,None 时批量处理该库所有表。
|
992
|
+
id_column (str): id 列名,默认 "id"。
|
993
|
+
dry_run (bool): 是否为模拟运行。
|
994
|
+
auto_drop_backup (bool): 校验通过后自动删除备份表。
|
905
995
|
Returns:
|
906
|
-
bool 或 dict: 单表时bool,批量时{表名: bool}
|
996
|
+
bool 或 dict: 单表时 bool,批量时 {表名: bool}
|
907
997
|
"""
|
908
998
|
if not table:
|
909
999
|
# 批量模式,对库下所有表执行
|
@@ -1057,6 +1147,41 @@ class MySQLDeduplicator:
|
|
1057
1147
|
finally:
|
1058
1148
|
self._release_table_lock(database, table)
|
1059
1149
|
|
1150
|
+
def _acquire_table_lock(self, database: str, table: str, timeout: int = 60) -> bool:
|
1151
|
+
"""
|
1152
|
+
获取表级锁,防止多线程/多进程并发操作同一张表。
|
1153
|
+
Args:
|
1154
|
+
database (str): 数据库名。
|
1155
|
+
table (str): 表名。
|
1156
|
+
timeout (int): 等待锁的超时时间(秒)。
|
1157
|
+
Returns:
|
1158
|
+
bool: 是否成功获取锁。
|
1159
|
+
"""
|
1160
|
+
key = f"{database.lower()}::{table.lower()}"
|
1161
|
+
start_time = time.time()
|
1162
|
+
while True:
|
1163
|
+
with self._lock:
|
1164
|
+
if key not in self._processing_tables:
|
1165
|
+
self._processing_tables.add(key)
|
1166
|
+
return True
|
1167
|
+
if time.time() - start_time > timeout:
|
1168
|
+
logger.warning('获取表级锁超时', {"库": database, "表": table, "timeout": timeout})
|
1169
|
+
return False
|
1170
|
+
time.sleep(0.2)
|
1171
|
+
|
1172
|
+
def _release_table_lock(self, database: str, table: str) -> None:
|
1173
|
+
"""
|
1174
|
+
释放表级锁。
|
1175
|
+
Args:
|
1176
|
+
database (str): 数据库名。
|
1177
|
+
table (str): 表名。
|
1178
|
+
Returns:
|
1179
|
+
None
|
1180
|
+
"""
|
1181
|
+
key = f"{database.lower()}::{table.lower()}"
|
1182
|
+
with self._lock:
|
1183
|
+
self._processing_tables.discard(key)
|
1184
|
+
|
1060
1185
|
@staticmethod
|
1061
1186
|
def _make_safe_table_name(base: str, prefix: str = '', suffix: str = '', max_length: int = 64) -> str:
|
1062
1187
|
"""
|
@@ -1077,30 +1202,6 @@ class MySQLDeduplicator:
|
|
1077
1202
|
return (prefix + suffix)[:max_length]
|
1078
1203
|
return f"{prefix}{base[:remain]}{suffix}"[:max_length]
|
1079
1204
|
|
1080
|
-
def _get_table_info(self, database: str, table: str, id_column: str = None):
|
1081
|
-
"""
|
1082
|
-
获取表的所有列名、主键列名列表、指定id列是否为主键。
|
1083
|
-
Args:
|
1084
|
-
database (str): 数据库名。
|
1085
|
-
table (str): 表名。
|
1086
|
-
id_column (str): id列名,默认使用self.primary_key。
|
1087
|
-
Returns:
|
1088
|
-
Tuple[List[str], List[str], bool]: (所有列名, 主键列名, id列是否为主键)
|
1089
|
-
"""
|
1090
|
-
id_column = id_column or self.primary_key
|
1091
|
-
with self._get_connection() as conn:
|
1092
|
-
with conn.cursor() as cursor:
|
1093
|
-
cursor.execute("""
|
1094
|
-
SELECT COLUMN_NAME, COLUMN_KEY
|
1095
|
-
FROM INFORMATION_SCHEMA.COLUMNS
|
1096
|
-
WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s
|
1097
|
-
""", (database, table))
|
1098
|
-
columns_info = cursor.fetchall()
|
1099
|
-
columns = [row['COLUMN_NAME'] for row in columns_info]
|
1100
|
-
pk_cols = [row['COLUMN_NAME'] for row in columns_info if row['COLUMN_KEY'] == 'PRI']
|
1101
|
-
id_is_pk = any(row['COLUMN_NAME'].lower() == id_column.lower() and row['COLUMN_KEY'] in ('PRI', 'UNI') for row in columns_info)
|
1102
|
-
return columns, pk_cols, id_is_pk
|
1103
|
-
|
1104
1205
|
def _make_temp_table_name(self, base: str) -> str:
|
1105
1206
|
"""
|
1106
1207
|
生成临时表名,带有 temp_ 前缀和 _dedup_ 进程线程后缀。
|
@@ -1122,26 +1223,42 @@ def main():
|
|
1122
1223
|
password='pwd',
|
1123
1224
|
host='localhost',
|
1124
1225
|
port=3306,
|
1125
|
-
|
1126
|
-
|
1127
|
-
|
1128
|
-
|
1129
|
-
|
1130
|
-
|
1131
|
-
|
1132
|
-
|
1133
|
-
|
1134
|
-
|
1226
|
+
max_workers= 2,
|
1227
|
+
batch_size=1000,
|
1228
|
+
skip_system_dbs=True,
|
1229
|
+
max_retries=3,
|
1230
|
+
retry_interval=5,
|
1231
|
+
pool_size=5,
|
1232
|
+
recent_month=1,
|
1233
|
+
# date_range=['2025-06-09', '2025-06-10'],
|
1234
|
+
date_column='日期',
|
1235
|
+
exclude_columns=None,
|
1236
|
+
exclude_databases=['测试库4'],
|
1237
|
+
exclude_tables={
|
1238
|
+
'推广数据2': [
|
1239
|
+
'地域报表_城市_2025_04',
|
1240
|
+
'地域报表_城市_2025_05',
|
1241
|
+
'地域报表_城市_2025_06',
|
1242
|
+
# '地域报表_城市_2025_04_copy1',
|
1243
|
+
# '地域报表_城市_2025_05_copy1',
|
1244
|
+
# '地域报表_城市_2025_06_copy1',
|
1245
|
+
'奥莱店_主体报表',
|
1246
|
+
# '奥莱店_主体报表_copy1',
|
1247
|
+
],
|
1248
|
+
"生意参谋3": [
|
1249
|
+
"商品排行_2025",
|
1250
|
+
],
|
1251
|
+
},
|
1135
1252
|
)
|
1136
1253
|
|
1137
1254
|
# 全库去重(单线程)
|
1138
|
-
deduplicator.deduplicate_all(dry_run=
|
1255
|
+
deduplicator.deduplicate_all(dry_run=False, parallel=True, reorder_id=True)
|
1139
1256
|
|
1140
1257
|
# # 指定数据库去重(多线程)
|
1141
|
-
# deduplicator.deduplicate_database('
|
1258
|
+
# deduplicator.deduplicate_database('推广数据2', dry_run=False, parallel=True, reorder_id=True)
|
1142
1259
|
|
1143
1260
|
# # 指定表去重(使用特定列)
|
1144
|
-
# deduplicator.deduplicate_table('
|
1261
|
+
# deduplicator.deduplicate_table('推广数据2', '地域报表_城市_2025_06_copy1', columns=[], dry_run=False, reorder_id=True)
|
1145
1262
|
|
1146
1263
|
# # 重排id列
|
1147
1264
|
# deduplicator.reorder_id_column('my_db', 'my_table', 'id', dry_run=False, auto_drop_backup=True)
|
@@ -1,5 +1,5 @@
|
|
1
1
|
mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
|
2
|
-
mdbq/__version__.py,sha256=
|
2
|
+
mdbq/__version__.py,sha256=GrY3av2BYeEaosI2qWYizQyTwyijdq8IuOuFjTJqLxE,19
|
3
3
|
mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
|
4
4
|
mdbq/aggregation/query_data.py,sha256=nxL8hSy8yI1QLlqnkTNHHQSxRfo-6WKL5OA-N4xLB7c,179832
|
5
5
|
mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
|
@@ -8,7 +8,7 @@ mdbq/log/__init__.py,sha256=Mpbrav0s0ifLL7lVDAuePEi1hJKiSHhxcv1byBKDl5E,15
|
|
8
8
|
mdbq/log/mylogger.py,sha256=Crw6LwVo3I3IUbzIETu8f46Quza3CTCh-qYf4edbBPo,24139
|
9
9
|
mdbq/log/spider_logging.py,sha256=-ozWWEGm3HVv604ozs_OOvVwumjokmUPwbaodesUrPY,1664
|
10
10
|
mdbq/mysql/__init__.py,sha256=A_DPJyAoEvTSFojiI2e94zP0FKtCkkwKP1kYUCSyQzo,11
|
11
|
-
mdbq/mysql/deduplicator.py,sha256=
|
11
|
+
mdbq/mysql/deduplicator.py,sha256=e84MLhWjdCoDB8GxUV-z5drn8hdKGlJKnHzNW0rjIM8,65345
|
12
12
|
mdbq/mysql/mysql.py,sha256=Kjpi-LL00WQUmTTOfhEBsNrmo4-4kFFJzrHbVKfqiBE,56770
|
13
13
|
mdbq/mysql/s_query.py,sha256=dlnrVJ3-Vp1Suv9CNbPxyYSRqRJUHjOpF39tb2F-wBc,10190
|
14
14
|
mdbq/mysql/uploader.py,sha256=8Px_W2bYOr1wQgMXMK0DggNiuE6a6Ul4BlJake8LSo8,64469
|
@@ -24,7 +24,7 @@ mdbq/redis/__init__.py,sha256=YtgBlVSMDphtpwYX248wGge1x-Ex_mMufz4-8W0XRmA,12
|
|
24
24
|
mdbq/redis/getredis.py,sha256=YHgCKO8mEsslwet33K5tGss-nrDDwPnOSlhA9iBu0jY,24078
|
25
25
|
mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
|
26
26
|
mdbq/spider/aikucun.py,sha256=cqK-JRd_DHbToC7hyo83m8o97NZkJFqmB2xBtr6aAVU,20961
|
27
|
-
mdbq-3.11.
|
28
|
-
mdbq-3.11.
|
29
|
-
mdbq-3.11.
|
30
|
-
mdbq-3.11.
|
27
|
+
mdbq-3.11.11.dist-info/METADATA,sha256=NHTu8tsBwtvh90jaiNN4E4i9SW5xkH6P-yYcBrxwSbU,365
|
28
|
+
mdbq-3.11.11.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
29
|
+
mdbq-3.11.11.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
|
30
|
+
mdbq-3.11.11.dist-info/RECORD,,
|
File without changes
|
File without changes
|