mdbq 1.6.5__py3-none-any.whl → 1.6.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -237,7 +237,6 @@ class MysqlDatasQuery:
237
237
  columns_name=['日期', '商品id', '商品白底图', '方版场景图'],
238
238
  )
239
239
  df = pd.DataFrame(data=data_values)
240
-
241
240
  return df
242
241
 
243
242
  def dplyd(self):
@@ -747,6 +746,8 @@ class GroupBy:
747
746
  df = df[['商品id', '商品图片', '日期']]
748
747
  df['商品图片'] = df['商品图片'].apply(lambda x: x if 'http' in x else None) # 检查是否是 http 链接
749
748
  df.dropna(how='all', subset=['商品图片'], axis=0, inplace=True) # 删除指定列含有空值的行
749
+ df['商品链接'] = df['商品id'].apply(
750
+ lambda x: f'https://detail.tmall.com/item.htm?id={str(x)}' if x and '.com' not in str(x) else x)
750
751
  df.sort_values(by='商品id', ascending=False, ignore_index=True, inplace=True) # ascending=False 降序排列
751
752
  self.data_tgyj.update(
752
753
  {
@@ -1166,6 +1167,10 @@ def data_aggregation(service_databases=[{}], months=1):
1166
1167
  # optimize_data.op_data(service_databases=service_databases, days=3650) # 立即启动对聚合数据的清理工作
1167
1168
 
1168
1169
 
1170
+ def main():
1171
+ pass
1172
+
1173
+
1169
1174
  if __name__ == '__main__':
1170
1175
  data_aggregation(service_databases=[{'company': 'mysql'}], months=1) # 正常的聚合所有数据
1171
1176
  # data_aggregation_one(service_databases=[{'home_lx': 'mysql'}], months=1) # 单独聚合某一个数据库,具体库进函数编辑
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 1.6.5
3
+ Version: 1.6.6
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -5,7 +5,7 @@ mdbq/aggregation/aggregation.py,sha256=mPKSiLsJXBPbDYsTso0VmDybinewFRs3z6uiA5Gqs
5
5
  mdbq/aggregation/df_types.py,sha256=oQJS2IBU3_IO6GMgbssHuC2yCjNnbta0QPGrFOwNLnU,7591
6
6
  mdbq/aggregation/mysql_types.py,sha256=DQYROALDiwjJzjhaJfIIdnsrNs11i5BORlj_v6bp67Y,11062
7
7
  mdbq/aggregation/optimize_data.py,sha256=u2Kl_MFtZueXJ57ycy4H2OhXD431RctUYJYCl637uT0,4176
8
- mdbq/aggregation/query_data.py,sha256=socYDytP4F7zLd1WRokKitQ0bNsK4TQgkO1GDmgi29Q,56214
8
+ mdbq/aggregation/query_data.py,sha256=EpPkFxeQK4o--GncY3UWiOQHhlfzxHTQ2Q41pDCFwWE,56409
9
9
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
10
10
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
11
11
  mdbq/clean/__init__.py,sha256=A1d6x3L27j4NtLgiFV5TANwEkLuaDfPHDQNrPBbNWtU,41
@@ -35,7 +35,7 @@ mdbq/pbix/__init__.py,sha256=Trtfaynu9RjoTyLLYBN2xdRxTvm_zhCniUkVTAYwcjo,24
35
35
  mdbq/pbix/pbix_refresh.py,sha256=JUjKW3bNEyoMVfVfo77UhguvS5AWkixvVhDbw4_MHco,2396
36
36
  mdbq/pbix/refresh_all.py,sha256=tgy762608HMaXWynbOURIf2UVMuSPybzrDXQnOOcnZU,6102
37
37
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
38
- mdbq-1.6.5.dist-info/METADATA,sha256=SAZM8eGb72ZrgsPg0SDcQzJYkqFPhWYYelrEHkAt9Bw,245
39
- mdbq-1.6.5.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
40
- mdbq-1.6.5.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
41
- mdbq-1.6.5.dist-info/RECORD,,
38
+ mdbq-1.6.6.dist-info/METADATA,sha256=g_aaT0UUU9KMZ31a47l3WJiq-9gV2I_ealT5d_sk_xo,245
39
+ mdbq-1.6.6.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
40
+ mdbq-1.6.6.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
41
+ mdbq-1.6.6.dist-info/RECORD,,
File without changes