mdbq 1.6.1__py3-none-any.whl → 1.6.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -76,7 +76,7 @@ class DatabaseUpdate:
76
76
  continue
77
77
  df = pd.DataFrame()
78
78
  encoding = self.get_encoding(file_path=os.path.join(root, name)) # 用于处理 csv 文件
79
- tg_names = ['账户报表', '计划报表', '单元报表', '关键词报表', '人群报表', '宝贝主体报表',
79
+ tg_names = ['账户报表', '计划报表', '单元报表', '关键词报表', '人群报表', '主体报表',
80
80
  '其他主体报表',
81
81
  '创意报表', '地域报表', '权益报表']
82
82
  for tg_name in tg_names:
@@ -58,7 +58,7 @@ class MongoDatasQuery:
58
58
  }
59
59
  df = self.download.data_to_df(
60
60
  db_name='推广数据2',
61
- collection_name='宝贝主体报表',
61
+ collection_name='主体报表',
62
62
  projection=projection,
63
63
  )
64
64
  return df
@@ -110,7 +110,7 @@ class MysqlDatasQuery:
110
110
  }
111
111
  df = self.download.data_to_df(
112
112
  db_name='推广数据2',
113
- table_name='宝贝主体报表',
113
+ table_name='主体报表',
114
114
  start_date=start_date,
115
115
  end_date=end_date,
116
116
  projection=projection,
@@ -416,7 +416,7 @@ class GroupBy:
416
416
  print(f'query_data.groupby函数中 {table_name} 传入的 df 不是 dataframe 结构')
417
417
  return pd.DataFrame()
418
418
  # print(table_name)
419
- if '宝贝主体报表' in table_name:
419
+ if '主体报表' in table_name:
420
420
  df.rename(columns={
421
421
  '场景名字': '营销场景',
422
422
  '主体id': '商品id',
@@ -817,7 +817,7 @@ class GroupBy:
817
817
  def performance(self, bb_tg=True):
818
818
  # print(self.data_tgyj)
819
819
  tg, syj, idbm, pic, cost = (
820
- self.data_tgyj['宝贝主体报表'],
820
+ self.data_tgyj['主体报表'],
821
821
  self.data_tgyj['天猫生意经_宝贝指标'],
822
822
  self.data_tgyj['商品id编码表'],
823
823
  self.data_tgyj['商品id图片对照表'],
@@ -966,6 +966,10 @@ class GroupBy:
966
966
  df.to_excel(os.path.join(path, filename + '.xlsx'), index=index, header=header, engine=engine, freeze_panes=freeze_panes)
967
967
 
968
968
 
969
+ def g_group():
970
+ pass
971
+
972
+
969
973
  def data_aggregation_one(service_databases=[{}], months=1):
970
974
  """
971
975
  # 单独处理某一个聚合数据库,修改添加 data_dict 的值
@@ -1030,7 +1034,7 @@ def data_aggregation(service_databases=[{}], months=1):
1030
1034
  data_dict = [
1031
1035
  {
1032
1036
  '数据库名': '聚合数据',
1033
- '集合名': '宝贝主体报表',
1037
+ '集合名': '主体报表',
1034
1038
  '唯一主键': ['日期', '推广渠道', '营销场景', '商品id', '花费'],
1035
1039
  '数据主体': sdq.tg_wxt(),
1036
1040
  },
@@ -1163,7 +1167,7 @@ def data_aggregation(service_databases=[{}], months=1):
1163
1167
 
1164
1168
 
1165
1169
  if __name__ == '__main__':
1166
- # data_aggregation(service_databases=[{'home_lx': 'mysql'}], months=1) # 正常的聚合所有数据
1167
- data_aggregation_one(service_databases=[{'home_lx': 'mysql'}], months=1) # 单独聚合某一个数据库,具体库进函数编辑
1170
+ data_aggregation(service_databases=[{'company': 'mysql'}], months=1) # 正常的聚合所有数据
1171
+ # data_aggregation_one(service_databases=[{'home_lx': 'mysql'}], months=1) # 单独聚合某一个数据库,具体库进函数编辑
1168
1172
  # optimize_data.op_data(service_databases=[{'company': 'mysql'}], days=3650) # 立即启动对聚合数据的清理工作
1169
1173
 
mdbq/clean/data_clean.py CHANGED
@@ -88,7 +88,7 @@ class DataClean:
88
88
  continue
89
89
  encoding = self.get_encoding(file_path=pathlib.Path(root, name))
90
90
  # ----------------- 推广报表 分割线 -----------------
91
- tg_names = ['账户报表', '计划报表', '单元报表', '关键词报表', '人群报表', '宝贝主体报表',
91
+ tg_names = ['账户报表', '计划报表', '单元报表', '关键词报表', '人群报表', '主体报表',
92
92
  '其他主体报表',
93
93
  '创意报表', '地域报表', '权益报表']
94
94
  for tg_name in tg_names:
mdbq/mysql/s_query.py CHANGED
@@ -61,6 +61,9 @@ class QueryDatas:
61
61
  if value == 1 and key in cols_exist:
62
62
  columns_in.append(key) # 提取值为 1 的键并清理不在数据表的键
63
63
  columns_in = [f"`{item}`" for item in columns_in]
64
+ if not columns_in:
65
+ print(f'传递的参数 projection,在数据库中没有找到匹配的列,请检查 projection: {projection}')
66
+ return df
64
67
  columns_in = ', '.join(columns_in)
65
68
  if '日期' in cols_exist: # 不论是否指定, 只要数据表有日期,则执行
66
69
  sql = (f"SELECT {columns_in} FROM `{db_name}`.`{table_name}` "
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 1.6.1
3
+ Version: 1.6.3
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -1,15 +1,15 @@
1
1
  mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
2
2
  mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
3
3
  mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
4
- mdbq/aggregation/aggregation.py,sha256=Fb74FW6EgYGlFiTqcITgBEWeHUAv13A2VN5EIKojOxQ,61703
4
+ mdbq/aggregation/aggregation.py,sha256=mQRNn-S6oqvt9CyREllWMTtR2dYRsVgUe5gcdUCYH8U,61697
5
5
  mdbq/aggregation/df_types.py,sha256=oQJS2IBU3_IO6GMgbssHuC2yCjNnbta0QPGrFOwNLnU,7591
6
6
  mdbq/aggregation/mysql_types.py,sha256=DQYROALDiwjJzjhaJfIIdnsrNs11i5BORlj_v6bp67Y,11062
7
7
  mdbq/aggregation/optimize_data.py,sha256=u2Kl_MFtZueXJ57ycy4H2OhXD431RctUYJYCl637uT0,4176
8
- mdbq/aggregation/query_data.py,sha256=ChYHLlj8vaTg39bPP8IHETnNUHi4alo-BD2RPdmTqX8,56214
8
+ mdbq/aggregation/query_data.py,sha256=socYDytP4F7zLd1WRokKitQ0bNsK4TQgkO1GDmgi29Q,56214
9
9
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
10
10
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
11
11
  mdbq/clean/__init__.py,sha256=A1d6x3L27j4NtLgiFV5TANwEkLuaDfPHDQNrPBbNWtU,41
12
- mdbq/clean/data_clean.py,sha256=qJqM73cAsd1Kz7KlpCUMBPNfRrbfHeT05zRAH55B54g,89162
12
+ mdbq/clean/data_clean.py,sha256=nkAy_KUnf6iX9nqUE588lebtWmk8Kelnwp_7g-wRfuE,89156
13
13
  mdbq/company/__init__.py,sha256=qz8F_GsP_pMB5PblgJAUAMjasuZbOEp3qQOCB39E8f0,21
14
14
  mdbq/company/copysh.py,sha256=WCZ92vCJAy6_ZFeOxWL-U9gArIpyga4xts-s1wKsspY,17268
15
15
  mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
@@ -25,7 +25,7 @@ mdbq/mongo/__init__.py,sha256=SILt7xMtQIQl_m-ik9WLtJSXIVf424iYgCfE_tnQFbw,13
25
25
  mdbq/mongo/mongo.py,sha256=v9qvrp6p1ZRWuPpbSilqveiE0FEcZF7U5xUPI0RN4xs,31880
26
26
  mdbq/mysql/__init__.py,sha256=A_DPJyAoEvTSFojiI2e94zP0FKtCkkwKP1kYUCSyQzo,11
27
27
  mdbq/mysql/mysql.py,sha256=Fiha5MUqac36UUhLfOoRybhwbRftub9qUBi63wVz1Pc,43329
28
- mdbq/mysql/s_query.py,sha256=WD_pwgUA9pSQMvNKUxQoHKQf2LgkV8PyQV9Te3AJYs4,8175
28
+ mdbq/mysql/s_query.py,sha256=fIQvQKPyV7rvSUuxVWXv9S5FmCnIM4GHKconE1Zn5BA,8378
29
29
  mdbq/mysql/year_month_day.py,sha256=VgewoE2pJxK7ErjfviL_SMTN77ki8GVbTUcao3vFUCE,1523
30
30
  mdbq/other/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
31
31
  mdbq/other/porxy.py,sha256=UHfgEyXugogvXgsG68a7QouUCKaohTKKkI4RN-kYSdQ,4961
@@ -35,7 +35,7 @@ mdbq/pbix/__init__.py,sha256=Trtfaynu9RjoTyLLYBN2xdRxTvm_zhCniUkVTAYwcjo,24
35
35
  mdbq/pbix/pbix_refresh.py,sha256=JUjKW3bNEyoMVfVfo77UhguvS5AWkixvVhDbw4_MHco,2396
36
36
  mdbq/pbix/refresh_all.py,sha256=tgy762608HMaXWynbOURIf2UVMuSPybzrDXQnOOcnZU,6102
37
37
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
38
- mdbq-1.6.1.dist-info/METADATA,sha256=RR3orjSkMDrCZdR_zDVwG-w2wz7Rn3ZTV38QktQcGbE,245
39
- mdbq-1.6.1.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
40
- mdbq-1.6.1.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
41
- mdbq-1.6.1.dist-info/RECORD,,
38
+ mdbq-1.6.3.dist-info/METADATA,sha256=O-aJvN3jsjTj44Y9kK383iiNPIl_GI5_LdGI1wRmf88,245
39
+ mdbq-1.6.3.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
40
+ mdbq-1.6.3.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
41
+ mdbq-1.6.3.dist-info/RECORD,,
File without changes