mdbq 1.4.6__py3-none-any.whl → 1.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -15,6 +15,12 @@ import json
15
15
  import os
16
16
  """
17
17
  程序用于下载数据库(调用 s_query.py 下载并清洗), 并对数据进行聚合清洗, 不会更新数据库信息;
18
+
19
+ 添加新库流程:
20
+ 1. 在 MysqlDatasQuery 类中创建函数,从数据库取出数据
21
+ 2. 在 GroupBy 类中创建函数,处理聚合数据
22
+ 3. 在 data_aggregation 类中添加 data_dict 字典键值,回传数据到数据库
23
+
18
24
  """
19
25
 
20
26
 
@@ -153,6 +159,29 @@ class MysqlDatasQuery:
153
159
  return df
154
160
 
155
161
  def dplyd(self):
162
+ """ 新旧版取的字段是一样的 """
163
+ start_date, end_date = self.months_data(num=self.months)
164
+ projection = {
165
+ '日期': 1,
166
+ '一级来源': 1,
167
+ '二级来源': 1,
168
+ '三级来源': 1,
169
+ '访客数': 1,
170
+ '支付金额': 1,
171
+ '支付买家数': 1,
172
+ '支付转化率': 1,
173
+ '加购人数': 1,
174
+ }
175
+ df = self.download.data_to_df(
176
+ db_name='生意参谋2',
177
+ table_name='店铺来源_日数据',
178
+ start_date=start_date,
179
+ end_date=end_date,
180
+ projection=projection,
181
+ )
182
+ return df
183
+
184
+ def dplyd_old(self):
156
185
  start_date, end_date = self.months_data(num=self.months)
157
186
  projection = {
158
187
  '日期': 1,
@@ -320,6 +349,8 @@ class GroupBy:
320
349
  }
321
350
  )
322
351
  return df
352
+ elif '店铺来源_日数据' in table_name:
353
+ return df
323
354
  elif '店铺来源_日数据_旧版' in table_name:
324
355
  return df
325
356
  elif '商品id编码表' in table_name:
@@ -513,7 +544,7 @@ def data_aggregation_one(service_databases=[{}], months=1, system_name=None,):
513
544
  data_dict = [
514
545
  {
515
546
  '数据库名': '聚合数据',
516
- '集合名': '天猫_店铺来源_日数据_旧版',
547
+ '集合名': '天猫_店铺来源_日数据',
517
548
  '唯一主键': ['日期', '一级来源', '二级来源', '三级来源'],
518
549
  '数据主体': sdq.dplyd(),
519
550
  },
@@ -565,10 +596,16 @@ def data_aggregation(service_databases=[{}], months=1, system_name=None,):
565
596
  },
566
597
  {
567
598
  '数据库名': '聚合数据',
568
- '集合名': '天猫_店铺来源_日数据_旧版',
599
+ '集合名': '天猫_店铺来源_日数据',
569
600
  '唯一主键': ['日期', '一级来源', '二级来源', '三级来源'],
570
601
  '数据主体': sdq.dplyd(),
571
602
  },
603
+ {
604
+ '数据库名': '聚合数据',
605
+ '集合名': '天猫_店铺来源_日数据_旧版',
606
+ '唯一主键': ['日期', '一级来源', '二级来源', '三级来源'],
607
+ '数据主体': sdq.dplyd_old(),
608
+ },
572
609
  {
573
610
  '数据库名': '聚合数据',
574
611
  '集合名': '商品id编码表',
@@ -627,6 +664,6 @@ def data_aggregation(service_databases=[{}], months=1, system_name=None,):
627
664
 
628
665
 
629
666
  if __name__ == '__main__':
630
- data_aggregation(service_databases=[{'home_lx': 'mysql'}], months=1, system_name='home_lx')
631
- # data_aggregation_one(service_databases=[{'company': 'mysql'}], months=10, system_name='company')
667
+ # data_aggregation(service_databases=[{'home_lx': 'mysql'}], months=1, system_name='home_lx')
668
+ data_aggregation_one(service_databases=[{'company': 'mysql'}], months=10, system_name='company')
632
669
  # optimize_data.op_data(service_databases=[{'company': 'mysql'}], days=3650) # 立即启动对聚合数据的清理工作
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 1.4.6
3
+ Version: 1.4.7
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -5,7 +5,7 @@ mdbq/aggregation/aggregation.py,sha256=uGLS4Zn8oX0TmFxo2G_bDuA7hok4afiZajJZDLxmS
5
5
  mdbq/aggregation/df_types.py,sha256=oQJS2IBU3_IO6GMgbssHuC2yCjNnbta0QPGrFOwNLnU,7591
6
6
  mdbq/aggregation/mysql_types.py,sha256=3j_SUTi7qYJyY3JtV_lRLIyczIczmRPE_WaIrXiZ6Rw,11425
7
7
  mdbq/aggregation/optimize_data.py,sha256=u2Kl_MFtZueXJ57ycy4H2OhXD431RctUYJYCl637uT0,4176
8
- mdbq/aggregation/query_data.py,sha256=vqAf-FRSnA8umAfhKZn-21AWjmXozcQT5Ec0gwEThzo,29856
8
+ mdbq/aggregation/query_data.py,sha256=PBBbnwN8fHxd6H_k8gZygu41bFk0H4oL3sKULa9_YSM,31207
9
9
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
10
10
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
11
11
  mdbq/clean/__init__.py,sha256=A1d6x3L27j4NtLgiFV5TANwEkLuaDfPHDQNrPBbNWtU,41
@@ -35,7 +35,7 @@ mdbq/pbix/__init__.py,sha256=Trtfaynu9RjoTyLLYBN2xdRxTvm_zhCniUkVTAYwcjo,24
35
35
  mdbq/pbix/pbix_refresh.py,sha256=JUjKW3bNEyoMVfVfo77UhguvS5AWkixvVhDbw4_MHco,2396
36
36
  mdbq/pbix/refresh_all.py,sha256=tgy762608HMaXWynbOURIf2UVMuSPybzrDXQnOOcnZU,6102
37
37
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
38
- mdbq-1.4.6.dist-info/METADATA,sha256=vQjJtP-PX-XLQgL2rZMIMnpav-BKqdoRoHomvHN0brA,245
39
- mdbq-1.4.6.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
40
- mdbq-1.4.6.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
41
- mdbq-1.4.6.dist-info/RECORD,,
38
+ mdbq-1.4.7.dist-info/METADATA,sha256=LtBOaDQcn4v_dj9wjGnSYaoGqXAtzKDdllsXLlCjDFw,245
39
+ mdbq-1.4.7.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
40
+ mdbq-1.4.7.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
41
+ mdbq-1.4.7.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.1.0)
2
+ Generator: bdist_wheel (0.44.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5