mdbq 1.4.4__py3-none-any.whl → 1.4.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -594,15 +594,15 @@ class DatabaseUpdate:
594
594
  if is_move:
595
595
  os.remove(os.path.join(root, name))
596
596
 
597
- df = self.date_table() # 创建一个日期表
598
- self.datas.append(
599
- {
600
- '数据库名': '聚合数据',
601
- '集合名称': '日期表',
602
- '数据主体': df,
603
- '文件名': '日期表文件名',
604
- }
605
- )
597
+ # df = self.date_table() # 创建一个日期表
598
+ # self.datas.append(
599
+ # {
600
+ # '数据库名': '聚合数据',
601
+ # '集合名称': '日期表',
602
+ # '数据主体': df,
603
+ # '文件名': '日期表文件名',
604
+ # }
605
+ # )
606
606
 
607
607
  def upload_df(self, service_databases=[{}], path=None, system_name=None):
608
608
  """
@@ -633,6 +633,8 @@ class DatabaseUpdate:
633
633
  is_file_dtype=True, # 默认本地文件优先: True
634
634
  )
635
635
  d.df_to_mongo(df=df, db_name=db_name, collection_name=collection_name)
636
+ if d.client:
637
+ d.client.close()
636
638
 
637
639
  elif database == 'mysql':
638
640
  username, password, host, port = get_myconf.select_config_values(
@@ -658,7 +660,7 @@ class DatabaseUpdate:
658
660
  db_name=db_name,
659
661
  table_name=collection_name,
660
662
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
661
- drop_dup=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
663
+ drop_duplicates=True, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
662
664
  filename=rt_filename, # 用来追踪处理进度
663
665
  system_name=system_name, # 用来追踪处理进度
664
666
  )
@@ -782,7 +784,7 @@ class DatabaseUpdate:
782
784
  encod = chardet.detect(f1).get('encoding')
783
785
  return encod
784
786
 
785
- def date_table(self):
787
+ def date_table(self, service_databases=[{}]):
786
788
  """
787
789
  生成 pbix使用的日期表
788
790
  """
@@ -807,7 +809,29 @@ class DatabaseUpdate:
807
809
  df['索引'] = p
808
810
  df['月索引'] = mon
809
811
  df.sort_values('日期', ascending=False, ignore_index=True, inplace=True)
810
- return df
812
+
813
+ for service_database in service_databases:
814
+ for service_name, database in service_database.items():
815
+ username, password, host, port = get_myconf.select_config_values(
816
+ target_service=service_name,
817
+ database=database,
818
+ )
819
+ m = mysql.MysqlUpload(
820
+ username=username,
821
+ password=password,
822
+ host=host,
823
+ port=port,
824
+ )
825
+ m.df_to_mysql(
826
+ df=df,
827
+ db_name='聚合数据',
828
+ table_name='日期表',
829
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
830
+ drop_duplicates=True, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
831
+ filename=None, # 用来追踪处理进度
832
+ system_name=service_name, # 用来追踪处理进度
833
+ )
834
+ # return df
811
835
 
812
836
 
813
837
  def upload_dir(path, db_name, collection_name, dbs={'mysql': True, 'mongodb': True}, json_path=None, system_name=None):
@@ -888,10 +912,10 @@ def upload_dir(path, db_name, collection_name, dbs={'mysql': True, 'mongodb': Tr
888
912
 
889
913
  if dbs['mongodb']:
890
914
  d.df_to_mongo(df=df, db_name=db_name, collection_name=collection_name)
891
- if dbs['mysql']: # drop_dup: 值为 True 时检查重复数据再插入
915
+ if dbs['mysql']: # drop_duplicates: 值为 True 时检查重复数据再插入
892
916
  m.df_to_mysql(df=df, db_name=db_name, table_name=collection_name,
893
- drop_dup=False, filename=name, count=f'{i}/{count}')
894
- # nas.df_to_mysql(df=df, db_name=db_name, table_name=collection_name)
917
+ drop_duplicates=True, filename=name, count=f'{i}/{count}')
918
+ # nas.df_to_mysql(df=df, db_name=db_name, table_name=collection_name, drop_duplicates=True,)
895
919
  except Exception as e:
896
920
  print(name, e)
897
921
  i += 1
@@ -909,7 +933,7 @@ def one_file_to_mysql(file, db_name, table_name, target_service, database):
909
933
  filename = os.path.basename(file)
910
934
  df = pd.read_csv(file, encoding='utf-8_sig', header=0, na_filter=False, float_precision='high')
911
935
  m = mysql.MysqlUpload(username=username, password=password, host=host, port=port)
912
- m.df_to_mysql(df=df, db_name=db_name, table_name=table_name, filename=filename, df_sql=True)
936
+ m.df_to_mysql(df=df, db_name=db_name, table_name=table_name, filename=filename, df_sql=True, drop_duplicates=False,)
913
937
 
914
938
 
915
939
  def file_dir(one_file=True):
@@ -1013,7 +1037,7 @@ if __name__ == '__main__':
1013
1037
  # username, password, host, port = get_myconf.select_config_values(target_service='company', database='mysql')
1014
1038
  # m = mysql.MysqlUpload(username=username, password=password, host=host, port=port)
1015
1039
  # m.df_to_mysql(df=df, db_name='test', table_name='增量更新测试',
1016
- # drop_dup=False,
1040
+ # drop_duplicates=True,
1017
1041
  # # icm_update=['日期', '推广费余额'],
1018
1042
  # system_name='company',
1019
1043
  # )
@@ -526,7 +526,7 @@ def data_aggregation_one(service_databases=[{}], months=1, system_name=None,):
526
526
  df=df,
527
527
  db_name=db_name,
528
528
  table_name=table_name,
529
- drop_dup=False,
529
+ drop_duplicates=False,
530
530
  icm_update=unique_key_list,
531
531
  system_name=system_name,
532
532
  service_databases=service_databases,
@@ -596,7 +596,7 @@ def data_aggregation(service_databases=[{}], months=1, system_name=None,):
596
596
  df=df,
597
597
  db_name=db_name,
598
598
  table_name=table_name,
599
- drop_dup=False,
599
+ drop_duplicates=False,
600
600
  icm_update=unique_key_list,
601
601
  system_name=system_name,
602
602
  service_databases=service_databases,
@@ -606,7 +606,7 @@ def data_aggregation(service_databases=[{}], months=1, system_name=None,):
606
606
  df=res,
607
607
  db_name='聚合数据',
608
608
  table_name='_全店商品销售',
609
- drop_dup=False,
609
+ drop_duplicates=False,
610
610
  icm_update=['日期', '商品id'], # 设置唯一主键
611
611
  system_name = system_name,
612
612
  service_databases=service_databases,
@@ -616,7 +616,7 @@ def data_aggregation(service_databases=[{}], months=1, system_name=None,):
616
616
  df=res,
617
617
  db_name='聚合数据',
618
618
  table_name='_推广商品销售',
619
- drop_dup=False,
619
+ drop_duplicates=False,
620
620
  icm_update=['日期', '商品id'], # 设置唯一主键
621
621
  system_name=system_name,
622
622
  service_databases=service_databases,
@@ -627,6 +627,6 @@ def data_aggregation(service_databases=[{}], months=1, system_name=None,):
627
627
 
628
628
 
629
629
  if __name__ == '__main__':
630
- # data_aggregation(service_databases=[{'company': 'mysql'}], months=1, system_name='company')
631
- data_aggregation_one(service_databases=[{'company': 'mysql'}], months=10, system_name='company')
630
+ data_aggregation(service_databases=[{'home_lx': 'mysql'}], months=1, system_name='home_lx')
631
+ # data_aggregation_one(service_databases=[{'company': 'mysql'}], months=10, system_name='company')
632
632
  # optimize_data.op_data(service_databases=[{'company': 'mysql'}], days=3650) # 立即启动对聚合数据的清理工作
mdbq/company/copysh.py CHANGED
@@ -347,6 +347,7 @@ def main():
347
347
  dp.new_unzip(is_move=True)
348
348
  dp.cleaning(is_move=True) # 公司台式机需要移除自身下载的文件
349
349
  dp.upload_df(service_databases=[{'company': 'mysql'}], system_name='company')
350
+ dp.date_table(service_databases=[{'company': 'mysql'}]) # 因为日期表不受 days 参数控制,因此单独更新日期表
350
351
 
351
352
  # 此操作用于修改 .copysh_conf 文件,将 ch_record 改为 false (更新完成)
352
353
  w = update_conf.UpdateConf()
mdbq/mysql/mysql.py CHANGED
@@ -57,17 +57,19 @@ class MysqlUpload:
57
57
  }
58
58
  self.filename = None
59
59
 
60
- def df_to_mysql(self, df, table_name, db_name='远程数据源', icm_update=[], icm_up=[], service_databases=[{'home_lx': 'mysql'}], df_sql=False, drop_dup=False, drop_duplicates=False, filename=None, count=None, json_path=None, system_name=None):
60
+ def df_to_mysql(self, df, table_name, db_name='远程数据源', icm_update=[], service_databases=[{'home_lx': 'mysql'}], df_sql=False, drop_duplicates=False, filename=None, count=None, json_path=None, system_name=None):
61
61
  """
62
62
  将 df 写入数据库
63
63
  db_name: 数据库名称
64
64
  table_name: 集合/表名称
65
- df_sql: 这是一个临时参数, 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
66
- drop_duplicates:值为 True 时(仅限于聚合数据使用),其他情况不要设置此参数
67
- drop_dup: 值为 True 时检查重复数据再插入,反之直接上传,数据量大时会比较慢
68
- filename: 传这个参数是方便定位产生错误的文件
69
- icm_update: 增量更新, 在聚合数据中使用,原始文件不要使用,设置此参数时需将 drop_dup 改为 False
65
+ df_sql: 这是一个临时参数, 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重,初创表大量上传数据的时候使用
66
+ drop_duplicates: 值为 True 时检查重复数据再插入,反之直接上传,数据量大时会比较慢
67
+ icm_update: 增量更新, 在聚合数据中使用,原始文件不要使用,设置此参数时需将 drop_duplicates 改为 False
70
68
  使用增量更新: 必须确保 icm_update 传进来的列必须是数据表中唯一主键,值不会发生变化,不会重复,否则可能产生错乱覆盖情况
69
+ filename: 用来追踪处理进度,传这个参数是方便定位产生错误的文件
70
+ system_name: 同样是用来追踪处理进度
71
+ service_databases: 这个参数是用来设置更新哪台服务器的 types 信息到本地 json 文件
72
+ json_path: 这个参数同样也是是用来设置更新 json 文件
71
73
  """
72
74
  self.filename = filename
73
75
  if isinstance(df, pd.DataFrame):
@@ -81,19 +83,6 @@ class MysqlUpload:
81
83
  cv = converter.DataFrameConverter()
82
84
  df = cv.convert_df_cols(df=df) # 清理 dataframe 非法值
83
85
 
84
- # if df_sql:
85
- # now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S ")
86
- # print(f'{now}正在更新 mysql ({self.host}:{self.port}) {db_name}/{table_name}, {count},{self.filename}')
87
- # engine = create_engine(f"mysql+pymysql://{self.username}:{self.password}@{self.host}:{self.port}/{db_name}") # 创建数据库引擎
88
- # df.to_sql(
89
- # name=table_name,
90
- # con=engine,
91
- # if_exists='append',
92
- # index=False,
93
- # chunksize=1000,
94
- # dtype={'京东价': 'INT'},
95
- # )
96
- # return
97
86
  connection = pymysql.connect(**self.config) # 连接数据库
98
87
  with connection.cursor() as cursor:
99
88
  cursor.execute(f"SHOW DATABASES LIKE '{db_name}'") # 检查数据库是否存在
@@ -173,14 +162,14 @@ class MysqlUpload:
173
162
  elif cl:
174
163
  mysql_types.mysql_all_dtypes(service_databases=service_databases, system_name=system_name) # 更新所有数据库所有数据表的 dtypes 信息到本地 json
175
164
 
176
- # 4. 移除指定日期范围内的数据,仅限于聚合数据使用,其他情况不要设置
177
- if drop_duplicates and '日期' in df.columns.tolist():
178
- dates = df['日期'].values.tolist()
179
- start_date = pd.to_datetime(min(dates)).strftime('%Y-%m-%d')
180
- end_date = (pd.to_datetime(max(dates)) + datetime.timedelta(days=1)).strftime('%Y-%m-%d')
181
- sql = f"DELETE FROM `{table_name}` WHERE {'日期'} BETWEEN '%s' AND '%s'" % (start_date, end_date)
182
- cursor.execute(sql)
183
- connection.commit()
165
+ # # 4. 移除指定日期范围内的数据,仅限于聚合数据使用,其他情况不要设置
166
+ # if drop_duplicates and '日期' in df.columns.tolist():
167
+ # dates = df['日期'].values.tolist()
168
+ # start_date = pd.to_datetime(min(dates)).strftime('%Y-%m-%d')
169
+ # end_date = (pd.to_datetime(max(dates)) + datetime.timedelta(days=1)).strftime('%Y-%m-%d')
170
+ # sql = f"DELETE FROM `{table_name}` WHERE {'日期'} BETWEEN '%s' AND '%s'" % (start_date, end_date)
171
+ # cursor.execute(sql)
172
+ # connection.commit()
184
173
 
185
174
  # 5. 更新插入数据
186
175
  now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S ")
@@ -200,7 +189,7 @@ class MysqlUpload:
200
189
  condition = ' AND '.join(condition) # 构建查询条件
201
190
  # print(condition)
202
191
 
203
- if drop_dup: # 查重插入
192
+ if drop_duplicates: # 查重插入
204
193
  sql = "SELECT %s FROM %s WHERE %s" % (cols, table_name, condition)
205
194
  # sql = f"SELECT {cols} FROM `{table_name}` WHERE `创建时间` = '2014-09-19 14:32:33'"
206
195
  # print(sql)
@@ -211,7 +200,7 @@ class MysqlUpload:
211
200
  cursor.execute(sql)
212
201
  # else:
213
202
  # print(f'重复数据不插入: {condition[:50]}...')
214
- elif icm_update: # 增量更新
203
+ elif icm_update: # 增量更新, 专门用于聚合数据,其他库不要调用
215
204
  """ 使用增量更新: 需确保 icm_update['主键'] 传进来的列必须是数据表中唯一主键,值不会发生变化且不会重复,否则可能产生覆盖情况 """
216
205
  sql = 'SELECT COLUMN_NAME FROM information_schema.columns WHERE table_schema = %s AND table_name = %s'
217
206
  cursor.execute(sql, (db_name, {table_name}))
@@ -261,26 +250,6 @@ class MysqlUpload:
261
250
  else: # 没有数据返回,则直接插入数据
262
251
  sql = f"INSERT INTO `{table_name}` ({cols}) VALUES ({values});"
263
252
  cursor.execute(sql)
264
- # elif icm_up:
265
- # sql = 'SELECT COLUMN_NAME FROM information_schema.columns WHERE table_schema = %s AND table_name = %s'
266
- # cursor.execute(sql, (db_name, {table_name}))
267
- # columns = cursor.fetchall()
268
- # cols_exist = [col['COLUMN_NAME'] for col in columns] # 数据表的所有列, 返回 list
269
- # cols_exist = [item for item in cols_exist if item != 'id']
270
- # update_col = [item for item in cols_exist if item not in icm_up] # 除了主键外的其他列
271
- #
272
- # unique_keys = ', '.join([f"`{item}`" for item in cols_exist])
273
- # unique_keys_values = ', '.join([f"'{data[item]}'" for item in cols_exist])
274
- #
275
- # change_values = []
276
- # for col in update_col:
277
- # change_values += [f"`{col}` = '{str(data[col])}'"]
278
- # change_values = ', '.join(f"{item}" for item in change_values) # 注意这里 item 外面没有反引号
279
- # # print(change_values)
280
- # sql = f"INSERT INTO `{table_name}` ({unique_keys}) VALUES ({unique_keys_values}) ON DUPLICATE KEY UPDATE {change_values};"
281
- # print(sql)
282
- # # cursor.execute(sql)
283
-
284
253
  else:
285
254
  sql = f"INSERT INTO `{table_name}` ({cols}) VALUES (%s);" % (values)
286
255
  cursor.execute(sql)
@@ -834,4 +803,17 @@ def download_datas_bak(table_name, save_path, start_date):
834
803
 
835
804
  if __name__ == '__main__':
836
805
  username, password, host, port = get_myconf.select_config_values(target_service='home_lx', database='mysql')
837
- print(username, password, host, port)
806
+ # print(username, password, host, port)
807
+ path = '/Users/xigua/Downloads/人群洞察.csv'
808
+ df = pd.read_csv(path, encoding='utf-8_sig', header=0, na_filter=False)
809
+ # print(df)
810
+ m = MysqlUpload(username=username, password=password, host=host, port=port)
811
+ m.df_to_mysql(
812
+ df=df,
813
+ db_name='test',
814
+ table_name='测试数据',
815
+ drop_duplicates=True,
816
+ # system_name=system_name,
817
+ # service_databases=service_databases,
818
+ )
819
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 1.4.4
3
+ Version: 1.4.6
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -1,17 +1,17 @@
1
1
  mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
2
2
  mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
3
3
  mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
4
- mdbq/aggregation/aggregation.py,sha256=xm9H2bD9GjKQd-sHQ5WIeskzagzaHwYMuokZnhGdFY8,58303
4
+ mdbq/aggregation/aggregation.py,sha256=uGLS4Zn8oX0TmFxo2G_bDuA7hok4afiZajJZDLxmSNg,59528
5
5
  mdbq/aggregation/df_types.py,sha256=oQJS2IBU3_IO6GMgbssHuC2yCjNnbta0QPGrFOwNLnU,7591
6
6
  mdbq/aggregation/mysql_types.py,sha256=3j_SUTi7qYJyY3JtV_lRLIyczIczmRPE_WaIrXiZ6Rw,11425
7
7
  mdbq/aggregation/optimize_data.py,sha256=u2Kl_MFtZueXJ57ycy4H2OhXD431RctUYJYCl637uT0,4176
8
- mdbq/aggregation/query_data.py,sha256=2SFeTkgsNgQVjNVDi1K2zTsNSw9dwL19Xj7Peu7sfRg,29828
8
+ mdbq/aggregation/query_data.py,sha256=vqAf-FRSnA8umAfhKZn-21AWjmXozcQT5Ec0gwEThzo,29856
9
9
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
10
10
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
11
11
  mdbq/clean/__init__.py,sha256=A1d6x3L27j4NtLgiFV5TANwEkLuaDfPHDQNrPBbNWtU,41
12
12
  mdbq/clean/data_clean.py,sha256=BIzc1XCJjJaZyPT6DCRXRCCRwBaeC5_lER0aqYF1P3M,87778
13
13
  mdbq/company/__init__.py,sha256=qz8F_GsP_pMB5PblgJAUAMjasuZbOEp3qQOCB39E8f0,21
14
- mdbq/company/copysh.py,sha256=XBnSalNHJPCBkswyiDpHhhVPqxRMOGcbAncWytrhCyQ,17039
14
+ mdbq/company/copysh.py,sha256=RWlQqfpqDiRO1QaVCbPhgAYSopnMoOgcnFhRi0TNFnM,17181
15
15
  mdbq/config/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
16
16
  mdbq/config/get_myconf.py,sha256=bp6bVARZVm3ANj1pmM9hLB8Ao539TUWeM9xxeSsBpzw,5994
17
17
  mdbq/config/products.py,sha256=9gqXJMsw8KKuD4Xs6krNgcF7AuWDvV7clI6wVi3QjcA,4260
@@ -24,7 +24,7 @@ mdbq/log/mylogger.py,sha256=oaT7Bp-Hb9jZt52seP3ISUuxVcI19s4UiqTeouScBO0,3258
24
24
  mdbq/mongo/__init__.py,sha256=SILt7xMtQIQl_m-ik9WLtJSXIVf424iYgCfE_tnQFbw,13
25
25
  mdbq/mongo/mongo.py,sha256=v9qvrp6p1ZRWuPpbSilqveiE0FEcZF7U5xUPI0RN4xs,31880
26
26
  mdbq/mysql/__init__.py,sha256=A_DPJyAoEvTSFojiI2e94zP0FKtCkkwKP1kYUCSyQzo,11
27
- mdbq/mysql/mysql.py,sha256=PXgE5mjLzzFDzor7DmcudEYz0pwHZRiiFomdkBmGj7U,44497
27
+ mdbq/mysql/mysql.py,sha256=flsp6ol0SpEfZpPTyvjYpcU67CNb26rUavAXxw5Y4VE,43123
28
28
  mdbq/mysql/s_query.py,sha256=a33aYhW6gAnspIZfQ7l23ePln9-MD1f_ukypr5M0jd8,8018
29
29
  mdbq/mysql/year_month_day.py,sha256=VgewoE2pJxK7ErjfviL_SMTN77ki8GVbTUcao3vFUCE,1523
30
30
  mdbq/other/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
@@ -35,7 +35,7 @@ mdbq/pbix/__init__.py,sha256=Trtfaynu9RjoTyLLYBN2xdRxTvm_zhCniUkVTAYwcjo,24
35
35
  mdbq/pbix/pbix_refresh.py,sha256=JUjKW3bNEyoMVfVfo77UhguvS5AWkixvVhDbw4_MHco,2396
36
36
  mdbq/pbix/refresh_all.py,sha256=tgy762608HMaXWynbOURIf2UVMuSPybzrDXQnOOcnZU,6102
37
37
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
38
- mdbq-1.4.4.dist-info/METADATA,sha256=k_rFWJWIrV84IBHNX4pfTrN9L3uoFh31MlFapUllfgs,245
39
- mdbq-1.4.4.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
40
- mdbq-1.4.4.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
41
- mdbq-1.4.4.dist-info/RECORD,,
38
+ mdbq-1.4.6.dist-info/METADATA,sha256=vQjJtP-PX-XLQgL2rZMIMnpav-BKqdoRoHomvHN0brA,245
39
+ mdbq-1.4.6.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
40
+ mdbq-1.4.6.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
41
+ mdbq-1.4.6.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.44.0)
2
+ Generator: setuptools (70.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5