mdbq 0.4.1__py3-none-any.whl → 0.4.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -377,8 +377,8 @@ class GroupBy:
377
377
  df = pd.merge(df, syj, how='left', left_on=['日期', '商品id'], right_on=['日期', '宝贝id'])
378
378
  df.drop(labels='宝贝id', axis=1, inplace=True)
379
379
  df.drop_duplicates(subset=['日期', '商品id', '花费', '销售额'], keep='last', inplace=True, ignore_index=True)
380
- df['商品成本'] = df.apply(lambda x: x['成本价'] + x['销售额']/x['销售量'] * 0.11 + 6 if x['销售量'] > 0 else 0, axis=1)
381
- df['商品毛利'] = df.apply(lambda x: x['销售额'] - x['商品成本'] * x['销售量'], axis=1)
380
+ df['商品成本'] = df.apply(lambda x: (x['成本价'] + x['销售额']/x['销售量'] * 0.11 + 6) * x['销售量'] if x['销售量'] > 0 else 0, axis=1)
381
+ df['商品毛利'] = df.apply(lambda x: x['销售额'] - x['商品成本'], axis=1)
382
382
  df['毛利率'] = df.apply(lambda x: round((x['销售额'] - x['商品成本']) / x['销售额'], 4) if x['销售额'] > 0 else 0, axis=1)
383
383
  df['盈亏'] = df.apply(lambda x: x['商品毛利'] - x['花费'], axis=1)
384
384
  return df
@@ -517,9 +517,9 @@ def data_aggregation(service_databases=[{}]):
517
517
  # g.as_csv(df=df, filename=tabel_name + '.csv')
518
518
  m.df_to_mysql(df=df, db_name=db_name, tabel_name=tabel_name) # 3. 回传数据库
519
519
  res = g.performance(bb_tg=True) # 盈亏表,依赖其他表,单独做
520
- m.df_to_mysql(df=res, db_name='聚合数据', tabel_name='全店商品销售')
520
+ m.df_to_mysql(df=res, db_name='聚合数据', tabel_name='_全店商品销售')
521
521
  res = g.performance(bb_tg=False) # 盈亏表,依赖其他表,单独做
522
- m.df_to_mysql(df=res, db_name='聚合数据', tabel_name='推广商品销售')
522
+ m.df_to_mysql(df=res, db_name='聚合数据', tabel_name='_推广商品销售')
523
523
 
524
524
  # optimize_data.op_data(service_databases=service_databases, days=3650) # 立即启动对聚合数据的清理工作
525
525
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 0.4.1
3
+ Version: 0.4.2
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -3,7 +3,7 @@ mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
3
3
  mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
4
4
  mdbq/aggregation/aggregation.py,sha256=TkxyIBowTuoNrhVkrgnYNXwNQXCX_xjh7wcYXdP65-E,58496
5
5
  mdbq/aggregation/optimize_data.py,sha256=jLAWtxPUuhpo4XTVrhKtT4xK3grs7r73ePQfLhxlu1I,779
6
- mdbq/aggregation/query_data.py,sha256=eQW8NvXie0HEpzPhU9AnKKw878TffwiDH3trvwvVbEs,24487
6
+ mdbq/aggregation/query_data.py,sha256=0i9aF63O-E_SGdJ_09-pAOvAGOzJBIQOzv29dLlwruA,24491
7
7
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
8
8
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
9
9
  mdbq/clean/__init__.py,sha256=A1d6x3L27j4NtLgiFV5TANwEkLuaDfPHDQNrPBbNWtU,41
@@ -33,7 +33,7 @@ mdbq/pbix/__init__.py,sha256=Trtfaynu9RjoTyLLYBN2xdRxTvm_zhCniUkVTAYwcjo,24
33
33
  mdbq/pbix/pbix_refresh.py,sha256=JUjKW3bNEyoMVfVfo77UhguvS5AWkixvVhDbw4_MHco,2396
34
34
  mdbq/pbix/refresh_all.py,sha256=USe3s5ws2Q-Gp9yUoFOAXJ4t0KVaekFULtAJaZkp448,5976
35
35
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
36
- mdbq-0.4.1.dist-info/METADATA,sha256=2L5Va0yp242Z4rtk0pSzw2AJqy4d19UUhYqHy2Jxhuk,245
37
- mdbq-0.4.1.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
38
- mdbq-0.4.1.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
39
- mdbq-0.4.1.dist-info/RECORD,,
36
+ mdbq-0.4.2.dist-info/METADATA,sha256=B0CWlkNoeloPjR6p2Z5YPwqbLNNRhWygNAlq98TBzRc,245
37
+ mdbq-0.4.2.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
38
+ mdbq-0.4.2.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
39
+ mdbq-0.4.2.dist-info/RECORD,,
File without changes