mdbq 0.3.6__py3-none-any.whl → 0.3.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -119,6 +119,7 @@ class MysqlDatasQuery:
119
119
  '订单数': 1,
120
120
  '退货量': 1,
121
121
  '退款额': 1,
122
+ '退款额_发货后': 1,
122
123
  '退货量_发货后': 1,
123
124
  }
124
125
  df = self.download.data_to_df(
@@ -204,7 +205,7 @@ class GroupBy:
204
205
  self.output = os.path.join('C:\\同步空间\\BaiduSyncdisk\\数据库导出')
205
206
  else:
206
207
  self.output = os.path.join('数据中心/数据库导出')
207
- self.data_tgyj = {}
208
+ self.data_tgyj = {} # 推广综合聚合数据表
208
209
 
209
210
  def groupby(self, df, tabel_name, is_maximize=True):
210
211
  """
@@ -278,6 +279,7 @@ class GroupBy:
278
279
  '订单数': ('订单数', np.min),
279
280
  '退货量': ('退货量', np.max),
280
281
  '退款额': ('退款额', np.max),
282
+ '退款额_发货后': ('退款额_发货后', np.max),
281
283
  '退货量_发货后': ('退货量_发货后', np.max),
282
284
  }
283
285
  )
@@ -292,7 +294,7 @@ class GroupBy:
292
294
  )
293
295
  self.data_tgyj.update(
294
296
  {
295
- tabel_name: df[['日期', '宝贝id', '销售额', '销售量']],
297
+ tabel_name: df[['日期', '宝贝id', '销售额', '销售量', '退款额_发货后', '退货量_发货后']],
296
298
  }
297
299
  )
298
300
  return df
@@ -367,7 +369,10 @@ class GroupBy:
367
369
  df = df[['宝贝id', '商家编码', '商品图片', '成本价']]
368
370
  df = pd.merge(tg, df, how='left', left_on='商品id', right_on='宝贝id')
369
371
  df.drop(labels='宝贝id', axis=1, inplace=True)
370
- df = pd.merge(df, syj, how='left', left_on=['日期', '商品id'], right_on=['日期', '宝贝id'])
372
+ # 生意经合并推广表,完整的数据表,包含所有推广、销售数据
373
+ df = pd.merge(syj, df, how='left', left_on=['日期', '宝贝id'], right_on=['日期', '商品id'])
374
+ # # 推广表合并生意经 , 以推广数据为基准,销售数据可能不齐全
375
+ # df = pd.merge(df, syj, how='left', left_on=['日期', '商品id'], right_on=['日期', '宝贝id'])
371
376
  df.drop(labels='宝贝id', axis=1, inplace=True)
372
377
  df.drop_duplicates(subset=['日期', '商品id', '花费', '销售额'], keep='last', inplace=True, ignore_index=True)
373
378
  df['商品成本'] = df.apply(lambda x: x['成本价'] + x['销售额']/x['销售量'] * 0.11 + 6 if x['销售量'] > 0 else 0, axis=1)
@@ -466,7 +471,7 @@ def data_aggregation(service_databases=[{}]):
466
471
  for service_database in service_databases:
467
472
  for service_name, database in service_database.items():
468
473
  sdq = MysqlDatasQuery(target_service=service_name) # 实例化数据处理类
469
- sdq.months = 1 # 设置数据周期, 1 表示近 2 个月
474
+ sdq.months = 36 # 设置数据周期, 1 表示近 2 个月
470
475
  g = GroupBy() # 实例化数据聚合类
471
476
  # 实例化数据库连接
472
477
  username, password, host, port = get_myconf.select_config_values(target_service=service_name, database=database)
@@ -512,7 +517,7 @@ def data_aggregation(service_databases=[{}]):
512
517
  res = g.performance() # 盈亏表,依赖其他表,单独做
513
518
  m.df_to_mysql(df=res, db_name='聚合数据', tabel_name='商品销售')
514
519
 
515
- optimize_data.op_data(service_databases=service_databases, days=3650) # 立即启动对聚合数据的清理工作
520
+ # optimize_data.op_data(service_databases=service_databases, days=3650) # 立即启动对聚合数据的清理工作
516
521
 
517
522
 
518
523
  if __name__ == '__main__':
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 0.3.6
3
+ Version: 0.3.8
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -3,7 +3,7 @@ mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
3
3
  mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
4
4
  mdbq/aggregation/aggregation.py,sha256=TkxyIBowTuoNrhVkrgnYNXwNQXCX_xjh7wcYXdP65-E,58496
5
5
  mdbq/aggregation/optimize_data.py,sha256=jLAWtxPUuhpo4XTVrhKtT4xK3grs7r73ePQfLhxlu1I,779
6
- mdbq/aggregation/query_data.py,sha256=0Wo8AKHOuJ2m8wqmpQJSBJjD7s_7eL6Ou5lZjxfbR0g,23498
6
+ mdbq/aggregation/query_data.py,sha256=oC3KuFgD4S1LHvo48nWYRmpztfWAQymV43BTQ4-2m5k,23993
7
7
  mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
8
8
  mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
9
9
  mdbq/clean/__init__.py,sha256=A1d6x3L27j4NtLgiFV5TANwEkLuaDfPHDQNrPBbNWtU,41
@@ -33,7 +33,7 @@ mdbq/pbix/__init__.py,sha256=Trtfaynu9RjoTyLLYBN2xdRxTvm_zhCniUkVTAYwcjo,24
33
33
  mdbq/pbix/pbix_refresh.py,sha256=JUjKW3bNEyoMVfVfo77UhguvS5AWkixvVhDbw4_MHco,2396
34
34
  mdbq/pbix/refresh_all.py,sha256=USe3s5ws2Q-Gp9yUoFOAXJ4t0KVaekFULtAJaZkp448,5976
35
35
  mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
36
- mdbq-0.3.6.dist-info/METADATA,sha256=CYRuia-lwJyJd1vXa7XdTQcidETWAbKSo_Atu5U4tDk,245
37
- mdbq-0.3.6.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
38
- mdbq-0.3.6.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
39
- mdbq-0.3.6.dist-info/RECORD,,
36
+ mdbq-0.3.8.dist-info/METADATA,sha256=LKi68SLQV0vEW9QbGUtkBG0lz-VTbGKk_JDIPUz_Oqo,245
37
+ mdbq-0.3.8.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
38
+ mdbq-0.3.8.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
39
+ mdbq-0.3.8.dist-info/RECORD,,
File without changes