mdbq 0.0.6__py3-none-any.whl → 0.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mdbq/aggregation/aggregation.py +11 -12
- mdbq/aggregation/query_data.py +165 -151
- mdbq/mysql/s_query.py +58 -103
- mdbq/mysql/year_month_day.py +38 -0
- {mdbq-0.0.6.dist-info → mdbq-0.0.8.dist-info}/METADATA +1 -1
- {mdbq-0.0.6.dist-info → mdbq-0.0.8.dist-info}/RECORD +8 -7
- {mdbq-0.0.6.dist-info → mdbq-0.0.8.dist-info}/WHEEL +1 -1
- {mdbq-0.0.6.dist-info → mdbq-0.0.8.dist-info}/top_level.txt +0 -0
mdbq/aggregation/aggregation.py
CHANGED
@@ -118,11 +118,13 @@ class DataTypes:
|
|
118
118
|
"""
|
119
119
|
# dtypes = df.dtypes.apply(str).to_dict() # 将 dataframe 数据类型转为字典形式
|
120
120
|
df.replace([np.inf, -np.inf], 0, inplace=True) # 清理一些非法值
|
121
|
-
|
122
|
-
cols = df.columns.tolist()
|
123
121
|
df.replace(to_replace=['\\N', '-', '--', '', 'nan'], value=0, regex=False, inplace=True) # 替换掉特殊字符
|
124
122
|
df.replace(to_replace=[','], value='', regex=True, inplace=True)
|
123
|
+
df.replace(to_replace=['="'], value='', regex=True, inplace=True) # ="和"不可以放在一起清洗, 因为有: id=86785565
|
124
|
+
df.replace(to_replace=['"'], value='', regex=True, inplace=True)
|
125
|
+
cols = df.columns.tolist()
|
125
126
|
for col in cols:
|
127
|
+
# df[col] = df[col].apply(lambda x: re.sub('[="]', '', str(x)) if '="' in str(x) else x)
|
126
128
|
# 百分比在某些数据库中不兼容, 转换百分比为小数
|
127
129
|
df[col] = df[col].apply(lambda x: float(float((str(x).rstrip("%"))) / 100) if str(x).endswith('%') and '~' not in str(x) else x)
|
128
130
|
# 尝试转换合适的数据类型
|
@@ -976,9 +978,9 @@ def update_dtypte():
|
|
976
978
|
|
977
979
|
def upload():
|
978
980
|
""" 上传一个文件夹到数据库 """
|
979
|
-
path = '/Users/xigua/数据中心/原始文件2
|
980
|
-
db_name = '
|
981
|
-
collection_name = '
|
981
|
+
path = '/Users/xigua/数据中心/原始文件2/生意经/宝贝指标'
|
982
|
+
db_name = '生意经2'
|
983
|
+
collection_name = '宝贝指标'
|
982
984
|
|
983
985
|
username, password, host, port = get_myconf.select_config_values(
|
984
986
|
target_service='home_lx',
|
@@ -1018,10 +1020,7 @@ def upload():
|
|
1018
1020
|
df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
|
1019
1021
|
if len(df) == 0:
|
1020
1022
|
continue
|
1021
|
-
|
1022
|
-
df[col] = df[col].apply(lambda x: re.sub('[="]', '', str(x)) if '="' in str(x) else x)
|
1023
|
-
# df.replace(to_replace=['--'], value='', regex=False, inplace=True)
|
1024
|
-
df = dt.convert_df_cols(df=df)
|
1023
|
+
df = dt.convert_df_cols(df=df) # 清理列名和 df 中的非法字符
|
1025
1024
|
try:
|
1026
1025
|
df = df.astype(dtypes)
|
1027
1026
|
except Exception as e:
|
@@ -1044,8 +1043,8 @@ def upload():
|
|
1044
1043
|
|
1045
1044
|
|
1046
1045
|
if __name__ == '__main__':
|
1047
|
-
username, password, host, port = get_myconf.select_config_values(target_service='aliyun', database='mongodb')
|
1048
|
-
print(username, password, host, port)
|
1046
|
+
# username, password, host, port = get_myconf.select_config_values(target_service='aliyun', database='mongodb')
|
1047
|
+
# print(username, password, host, port)
|
1049
1048
|
|
1050
1049
|
# main()
|
1051
|
-
|
1050
|
+
upload()
|
mdbq/aggregation/query_data.py
CHANGED
@@ -20,20 +20,13 @@ class MongoDatasQuery:
|
|
20
20
|
"""
|
21
21
|
def __init__(self, target_service):
|
22
22
|
# target_service 从哪个服务器下载数据
|
23
|
-
self.
|
24
|
-
if platform.system() == 'Darwin':
|
25
|
-
self.output = os.path.join('/Users', getpass.getuser(), '数据中心/数据库导出')
|
26
|
-
elif platform.system() == 'Windows':
|
27
|
-
self.output = os.path.join('C:\\同步空间\\BaiduSyncdisk\\数据库导出')
|
28
|
-
else:
|
29
|
-
self.output = os.path.join('数据中心/数据库导出')
|
30
|
-
|
23
|
+
self.months = 0 # 下载几个月数据, 0 表示当月, 1 是上月 1 号至今
|
31
24
|
# 实例化一个下载类
|
32
25
|
username, password, host, port = get_myconf.select_config_values(target_service=target_service, database='mongodb')
|
33
26
|
self.download = mongo.DownMongo(username=username, password=password, host=host, port=port, save_path=None)
|
34
27
|
|
35
28
|
def tg_wxt(self):
|
36
|
-
self.download.start_date, self.download.end_date = self.months_data(num=
|
29
|
+
self.download.start_date, self.download.end_date = self.months_data(num=self.months)
|
37
30
|
projection = {
|
38
31
|
'日期': 1,
|
39
32
|
'场景名字': 1,
|
@@ -48,48 +41,11 @@ class MongoDatasQuery:
|
|
48
41
|
'直接成交笔数': 1,
|
49
42
|
'直接成交金额': 1,
|
50
43
|
}
|
51
|
-
df = self.download.data_to_df(
|
52
|
-
|
53
|
-
'
|
54
|
-
|
55
|
-
|
56
|
-
'总成交笔数': '成交笔数',
|
57
|
-
'总成交金额': '成交金额'
|
58
|
-
}, inplace=True)
|
59
|
-
df = df.astype({
|
60
|
-
'花费': float,
|
61
|
-
'展现量': int,
|
62
|
-
'点击量': int,
|
63
|
-
'加购量': int,
|
64
|
-
'成交笔数': int,
|
65
|
-
'成交金额': float,
|
66
|
-
'自然流量曝光量': int,
|
67
|
-
'直接成交笔数': int,
|
68
|
-
'直接成交金额': float,
|
69
|
-
}, errors='raise')
|
70
|
-
df.fillna(0, inplace=True)
|
71
|
-
if self.is_maximize:
|
72
|
-
df = df.groupby(['日期', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
|
73
|
-
**{'加购量': ('加购量', np.max),
|
74
|
-
'成交笔数': ('成交笔数', np.max),
|
75
|
-
'成交金额': ('成交金额', np.max),
|
76
|
-
'自然流量曝光量': ('自然流量曝光量', np.max),
|
77
|
-
'直接成交笔数': ('直接成交笔数', np.max),
|
78
|
-
'直接成交金额': ('直接成交金额', np.max)
|
79
|
-
}
|
80
|
-
)
|
81
|
-
else:
|
82
|
-
df = df.groupby(['日期', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
|
83
|
-
**{'加购量': ('加购量', np.min),
|
84
|
-
'成交笔数': ('成交笔数', np.min),
|
85
|
-
'成交金额': ('成交金额', np.min),
|
86
|
-
'自然流量曝光量': ('自然流量曝光量', np.min),
|
87
|
-
'直接成交笔数': ('直接成交笔数', np.max),
|
88
|
-
'直接成交金额': ('直接成交金额', np.max)
|
89
|
-
}
|
90
|
-
)
|
91
|
-
df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
|
92
|
-
# print(df)
|
44
|
+
df = self.download.data_to_df(
|
45
|
+
db_name='天猫数据2',
|
46
|
+
collection_name='推广数据_宝贝主体报表',
|
47
|
+
projection=projection,
|
48
|
+
)
|
93
49
|
return df
|
94
50
|
|
95
51
|
@staticmethod
|
@@ -109,111 +65,66 @@ class MongoDatasQuery:
|
|
109
65
|
start_date = f'{start_date.year}-{start_date.month}-01' # 替换为 n 月以前的第一天
|
110
66
|
return pd.to_datetime(start_date), pd.to_datetime(end_date)
|
111
67
|
|
112
|
-
def as_csv(self, df, filename, path=None, encoding='utf-8_sig',
|
113
|
-
index=False, header=True, st_ascend=None, ascend=None, freq=None):
|
114
|
-
"""
|
115
|
-
path: 子文件夹,可以不传,默认导出目录 self.output
|
116
|
-
st_ascend: 排序参数
|
117
|
-
ascend: 升降序
|
118
|
-
freq: 将创建子文件夹并按月分类存储, freq='Y',或 freq='M'
|
119
|
-
"""
|
120
|
-
if not path:
|
121
|
-
path = self.output
|
122
|
-
else:
|
123
|
-
path = os.path.join(self.output, path)
|
124
|
-
if not os.path.exists(path):
|
125
|
-
os.makedirs(path)
|
126
|
-
if st_ascend and ascend:
|
127
|
-
try:
|
128
|
-
df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
|
129
|
-
except:
|
130
|
-
print(f'{filename}: sort_values排序参数错误!')
|
131
|
-
if freq:
|
132
|
-
if '日期' not in df.columns.tolist():
|
133
|
-
return print(f'{filename}: 数据缺少日期列,无法按日期分组')
|
134
|
-
groups = df.groupby(pd.Grouper(key='日期', freq=freq))
|
135
|
-
for name1, df in groups:
|
136
|
-
if freq == 'M':
|
137
|
-
sheet_name = name1.strftime('%Y-%m')
|
138
|
-
elif freq == 'Y':
|
139
|
-
sheet_name = name1.strftime('%Y年')
|
140
|
-
else:
|
141
|
-
sheet_name = '_未分类'
|
142
|
-
new_path = os.path.join(path, filename)
|
143
|
-
if not os.path.exists(new_path):
|
144
|
-
os.makedirs(new_path)
|
145
|
-
new_path = os.path.join(new_path, f'{filename}{sheet_name}.csv')
|
146
|
-
if st_ascend and ascend: # 这里需要重新排序一次,原因未知
|
147
|
-
try:
|
148
|
-
df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
|
149
|
-
except:
|
150
|
-
print(f'{filename}: sort_values排序参数错误!')
|
151
|
-
|
152
|
-
df.to_csv(new_path, encoding=encoding, index=index, header=header)
|
153
|
-
else:
|
154
|
-
df.to_csv(os.path.join(path, filename + '.csv'), encoding=encoding, index=index, header=header)
|
155
|
-
|
156
|
-
def as_json(self, df, filename, path=None, orient='records', force_ascii=False, st_ascend=None, ascend=None):
|
157
|
-
if not path:
|
158
|
-
path = self.output
|
159
|
-
else:
|
160
|
-
path = os.path.join(self.output, path)
|
161
|
-
if st_ascend and ascend:
|
162
|
-
try:
|
163
|
-
df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
|
164
|
-
except:
|
165
|
-
print(f'{filename}: sort_values排序参数错误!')
|
166
|
-
df.to_json(os.path.join(path, filename + '.json'),
|
167
|
-
orient=orient, force_ascii=force_ascii)
|
168
|
-
|
169
|
-
def as_excel(self, df, filename, path=None, index=False, header=True, engine='openpyxl',
|
170
|
-
freeze_panes=(1, 0), st_ascend=None, ascend=None):
|
171
|
-
if not path:
|
172
|
-
path = self.output
|
173
|
-
else:
|
174
|
-
path = os.path.join(self.output, path)
|
175
|
-
if st_ascend and ascend:
|
176
|
-
try:
|
177
|
-
df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
|
178
|
-
except:
|
179
|
-
print(f'{filename}: sort_values排序参数错误!')
|
180
|
-
df.to_excel(os.path.join(path, filename + '.xlsx'),
|
181
|
-
index=index, header=header, engine=engine, freeze_panes=freeze_panes)
|
182
|
-
|
183
68
|
|
184
69
|
class MysqlDatasQuery:
|
185
70
|
"""
|
186
|
-
|
187
|
-
self.output: 数据库默认导出目录
|
188
|
-
self.is_maximize: 是否最大转化数据
|
71
|
+
从数据库中下载数据
|
189
72
|
"""
|
190
73
|
def __init__(self, target_service):
|
191
74
|
# target_service 从哪个服务器下载数据
|
192
|
-
self.
|
193
|
-
if platform.system() == 'Darwin':
|
194
|
-
self.output = os.path.join('/Users', getpass.getuser(), '数据中心/数据库导出')
|
195
|
-
elif platform.system() == 'Windows':
|
196
|
-
self.output = os.path.join('C:\\同步空间\\BaiduSyncdisk\\数据库导出')
|
197
|
-
else:
|
198
|
-
self.output = os.path.join('数据中心/数据库导出')
|
199
|
-
self.months = 1 # 下载几个月数据, 0 表示当月, 1 是上月 1 号至今
|
200
|
-
|
75
|
+
self.months = 0 # 下载几个月数据, 0 表示当月, 1 是上月 1 号至今
|
201
76
|
# 实例化一个下载类
|
202
77
|
username, password, host, port = get_myconf.select_config_values(target_service=target_service, database='mysql')
|
203
78
|
self.download = s_query.QueryDatas(username=username, password=password, host=host, port=port)
|
204
79
|
|
205
80
|
def tg_wxt(self):
|
206
81
|
start_date, end_date = self.months_data(num=self.months)
|
207
|
-
|
82
|
+
projection = {
|
83
|
+
'日期': 1,
|
84
|
+
'场景名字': 1,
|
85
|
+
'主体id': 1,
|
86
|
+
'花费': 1,
|
87
|
+
'展现量': 1,
|
88
|
+
'点击量': 1,
|
89
|
+
'总购物车数': 1,
|
90
|
+
'总成交笔数': 1,
|
91
|
+
'总成交金额': 1,
|
92
|
+
'自然流量曝光量': 1,
|
93
|
+
'直接成交笔数': 1,
|
94
|
+
'直接成交金额': 1,
|
95
|
+
}
|
96
|
+
df = self.download.data_to_df(
|
97
|
+
db_name='天猫数据2',
|
98
|
+
tabel_name='推广数据_宝贝主体报表',
|
99
|
+
start_date=start_date,
|
100
|
+
end_date=end_date,
|
101
|
+
projection=projection,
|
102
|
+
)
|
103
|
+
return df
|
104
|
+
|
105
|
+
def syj(self):
|
106
|
+
start_date, end_date = self.months_data(num=self.months)
|
107
|
+
projection = {
|
108
|
+
'日期': 1,
|
109
|
+
'宝贝id': 1,
|
110
|
+
'商家编码': 1,
|
111
|
+
'行业类目': 1,
|
112
|
+
'销售额': 1,
|
113
|
+
'销售量': 1,
|
114
|
+
'订单数': 1,
|
115
|
+
'退货量': 1,
|
116
|
+
'退款额': 1,
|
117
|
+
'退货量_发货后_': 1,
|
118
|
+
}
|
119
|
+
df = self.download.data_to_df(
|
120
|
+
db_name='生意经2',
|
121
|
+
tabel_name='宝贝指标',
|
122
|
+
start_date=start_date,
|
123
|
+
end_date=end_date,
|
124
|
+
projection=projection,
|
125
|
+
)
|
208
126
|
return df
|
209
127
|
|
210
|
-
@staticmethod
|
211
|
-
def days_data(days, end_date=None):
|
212
|
-
""" 读取近 days 天的数据 """
|
213
|
-
if not end_date:
|
214
|
-
end_date = datetime.datetime.now()
|
215
|
-
start_date = end_date - datetime.timedelta(days=days)
|
216
|
-
return pd.to_datetime(start_date), pd.to_datetime(end_date)
|
217
128
|
|
218
129
|
@staticmethod
|
219
130
|
def months_data(num=0, end_date=None):
|
@@ -224,14 +135,101 @@ class MysqlDatasQuery:
|
|
224
135
|
start_date = f'{start_date.year}-{start_date.month}-01' # 替换为 n 月以前的第一天
|
225
136
|
return pd.to_datetime(start_date), pd.to_datetime(end_date)
|
226
137
|
|
138
|
+
|
139
|
+
class GroupBy:
|
140
|
+
""" 数据聚合和导出 """
|
141
|
+
def __init__(self):
|
142
|
+
# self.output: 数据库默认导出目录
|
143
|
+
if platform.system() == 'Darwin':
|
144
|
+
self.output = os.path.join('/Users', getpass.getuser(), '数据中心/数据库导出')
|
145
|
+
elif platform.system() == 'Windows':
|
146
|
+
self.output = os.path.join('C:\\同步空间\\BaiduSyncdisk\\数据库导出')
|
147
|
+
else:
|
148
|
+
self.output = os.path.join('数据中心/数据库导出')
|
149
|
+
|
150
|
+
def groupby(self, df, tabel_name, is_maximize=True):
|
151
|
+
"""
|
152
|
+
self.is_maximize: 是否最大转化数据
|
153
|
+
"""
|
154
|
+
|
155
|
+
if '宝贝主体报表' in tabel_name:
|
156
|
+
df.rename(columns={
|
157
|
+
'场景名字': '营销场景',
|
158
|
+
'主体id': '商品id',
|
159
|
+
'总购物车数': '加购量',
|
160
|
+
'总成交笔数': '成交笔数',
|
161
|
+
'总成交金额': '成交金额'
|
162
|
+
}, inplace=True)
|
163
|
+
df = df.astype({
|
164
|
+
'花费': float,
|
165
|
+
'展现量': int,
|
166
|
+
'点击量': int,
|
167
|
+
'加购量': int,
|
168
|
+
'成交笔数': int,
|
169
|
+
'成交金额': float,
|
170
|
+
'自然流量曝光量': int,
|
171
|
+
'直接成交笔数': int,
|
172
|
+
'直接成交金额': float,
|
173
|
+
}, errors='raise')
|
174
|
+
df.fillna(0, inplace=True)
|
175
|
+
if is_maximize:
|
176
|
+
df = df.groupby(['日期', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
|
177
|
+
**{'加购量': ('加购量', np.max),
|
178
|
+
'成交笔数': ('成交笔数', np.max),
|
179
|
+
'成交金额': ('成交金额', np.max),
|
180
|
+
'自然流量曝光量': ('自然流量曝光量', np.max),
|
181
|
+
'直接成交笔数': ('直接成交笔数', np.max),
|
182
|
+
'直接成交金额': ('直接成交金额', np.max)
|
183
|
+
}
|
184
|
+
)
|
185
|
+
else:
|
186
|
+
df = df.groupby(['日期', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
|
187
|
+
**{'加购量': ('加购量', np.min),
|
188
|
+
'成交笔数': ('成交笔数', np.min),
|
189
|
+
'成交金额': ('成交金额', np.min),
|
190
|
+
'自然流量曝光量': ('自然流量曝光量', np.min),
|
191
|
+
'直接成交笔数': ('直接成交笔数', np.max),
|
192
|
+
'直接成交金额': ('直接成交金额', np.max)
|
193
|
+
}
|
194
|
+
)
|
195
|
+
df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
|
196
|
+
return df
|
197
|
+
if '宝贝指标' in tabel_name:
|
198
|
+
df.fillna(0, inplace=True)
|
199
|
+
df = df[(df['销售额'] != 0) | (df['退款额'] != 0)]
|
200
|
+
df = df.groupby(['日期', '宝贝id', '商家编码', '行业类目'], as_index=False).agg(
|
201
|
+
**{'销售额': ('销售额', np.min),
|
202
|
+
'销售量': ('销售量', np.min),
|
203
|
+
'订单数': ('订单数', np.min),
|
204
|
+
'退货量': ('退货量', np.max),
|
205
|
+
'退款额': ('退款额', np.max),
|
206
|
+
'退货量_发货后_': ('退货量_发货后_', np.max),
|
207
|
+
}
|
208
|
+
)
|
209
|
+
df['件均价'] = df.apply(lambda x: x['销售额'] / x['销售量'] if x['销售量'] > 0 else 0, axis=1).round(
|
210
|
+
0) # 两列运算, 避免除以0
|
211
|
+
df['价格带'] = df['件均价'].apply(
|
212
|
+
lambda x: '2000+' if x >= 2000
|
213
|
+
else '1000+' if x >= 1000
|
214
|
+
else '500+' if x >= 500
|
215
|
+
else '300+' if x >= 300
|
216
|
+
else '300以下'
|
217
|
+
)
|
218
|
+
return df
|
219
|
+
else:
|
220
|
+
print(f'<{tabel_name}>: Groupby 类尚未配置,数据为空')
|
221
|
+
return pd.DataFrame({})
|
222
|
+
|
227
223
|
def as_csv(self, df, filename, path=None, encoding='utf-8_sig',
|
228
224
|
index=False, header=True, st_ascend=None, ascend=None, freq=None):
|
229
225
|
"""
|
230
|
-
path:
|
231
|
-
st_ascend: 排序参数
|
232
|
-
ascend: 升降序
|
233
|
-
freq: 将创建子文件夹并按月分类存储, freq='Y'
|
226
|
+
path: 默认导出目录 self.output, 这个函数的 path 作为子文件夹,可以不传,
|
227
|
+
st_ascend: 排序参数 ['column1', 'column2']
|
228
|
+
ascend: 升降序 [True, False]
|
229
|
+
freq: 将创建子文件夹并按月分类存储, freq='Y', 或 freq='M'
|
234
230
|
"""
|
231
|
+
if len(df) == 0:
|
232
|
+
return
|
235
233
|
if not path:
|
236
234
|
path = self.output
|
237
235
|
else:
|
@@ -269,10 +267,14 @@ class MysqlDatasQuery:
|
|
269
267
|
df.to_csv(os.path.join(path, filename + '.csv'), encoding=encoding, index=index, header=header)
|
270
268
|
|
271
269
|
def as_json(self, df, filename, path=None, orient='records', force_ascii=False, st_ascend=None, ascend=None):
|
270
|
+
if len(df) == 0:
|
271
|
+
return
|
272
272
|
if not path:
|
273
273
|
path = self.output
|
274
274
|
else:
|
275
275
|
path = os.path.join(self.output, path)
|
276
|
+
if not os.path.exists(path):
|
277
|
+
os.makedirs(path)
|
276
278
|
if st_ascend and ascend:
|
277
279
|
try:
|
278
280
|
df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
|
@@ -283,10 +285,14 @@ class MysqlDatasQuery:
|
|
283
285
|
|
284
286
|
def as_excel(self, df, filename, path=None, index=False, header=True, engine='openpyxl',
|
285
287
|
freeze_panes=(1, 0), st_ascend=None, ascend=None):
|
288
|
+
if len(df) == 0:
|
289
|
+
return
|
286
290
|
if not path:
|
287
291
|
path = self.output
|
288
292
|
else:
|
289
293
|
path = os.path.join(self.output, path)
|
294
|
+
if not os.path.exists(path):
|
295
|
+
os.makedirs(path)
|
290
296
|
if st_ascend and ascend:
|
291
297
|
try:
|
292
298
|
df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
|
@@ -294,13 +300,21 @@ class MysqlDatasQuery:
|
|
294
300
|
print(f'{filename}: sort_values排序参数错误!')
|
295
301
|
df.to_excel(os.path.join(path, filename + '.xlsx'),
|
296
302
|
index=index, header=header, engine=engine, freeze_panes=freeze_panes)
|
297
|
-
|
298
|
-
|
303
|
+
|
304
|
+
|
299
305
|
def main():
|
300
|
-
sdq = MysqlDatasQuery(target_service='
|
306
|
+
sdq = MysqlDatasQuery(target_service='home_lx')
|
301
307
|
sdq.months = 0
|
302
|
-
|
303
|
-
|
308
|
+
|
309
|
+
# df = sdq.tg_wxt() # 从数据库中获取数据并转为 df
|
310
|
+
# g = GroupBy() # 数据聚合
|
311
|
+
# df = g.groupby(df=df, tabel_name='推广数据_宝贝主体报表', is_maximize=True)
|
312
|
+
# g.as_csv(df=df, filename='推广数据_宝贝主体报表') # 数据导出
|
313
|
+
|
314
|
+
df = sdq.syj()
|
315
|
+
g = GroupBy()
|
316
|
+
df = g.groupby(df=df, tabel_name='宝贝指标', is_maximize=True)
|
317
|
+
g.as_csv(df=df, filename='宝贝指标')
|
304
318
|
|
305
319
|
|
306
320
|
if __name__ == '__main__':
|
mdbq/mysql/s_query.py
CHANGED
@@ -31,135 +31,90 @@ class QueryDatas:
|
|
31
31
|
'cursorclass': pymysql.cursors.DictCursor,
|
32
32
|
}
|
33
33
|
|
34
|
-
def data_to_df(self, db_name, tabel_name, start_date, end_date, projection=[]):
|
34
|
+
def data_to_df(self, db_name, tabel_name, start_date, end_date, projection: dict=[]):
|
35
|
+
|
35
36
|
start_date = pd.to_datetime(start_date).strftime('%Y-%m-%d')
|
36
37
|
end_date = pd.to_datetime(end_date).strftime('%Y-%m-%d')
|
37
|
-
df = pd.DataFrame()
|
38
|
+
df = pd.DataFrame() # 初始化df
|
39
|
+
|
40
|
+
if self.check_infos(db_name, tabel_name) == False:
|
41
|
+
return df
|
38
42
|
|
43
|
+
self.config.update({'database': db_name})
|
44
|
+
connection = pymysql.connect(**self.config) # 重新连接数据库
|
45
|
+
try:
|
46
|
+
with connection.cursor() as cursor:
|
47
|
+
# 3. 获取数据表的所有列信息
|
48
|
+
sql = 'SELECT COLUMN_NAME FROM information_schema.columns WHERE table_schema = %s AND table_name = %s'
|
49
|
+
cursor.execute(sql, (db_name, {tabel_name}))
|
50
|
+
columns = cursor.fetchall()
|
51
|
+
cols_exist = [col['COLUMN_NAME'] for col in columns] # 数据表的所有列, 返回 list
|
52
|
+
|
53
|
+
# 4. 构建 SQL 查询语句
|
54
|
+
if projection: # 获取指定列
|
55
|
+
columns_in = []
|
56
|
+
for key, value in projection.items():
|
57
|
+
if value == 1 and key in cols_exist:
|
58
|
+
columns_in.append(key) # 提取值为 1 的键并清理不在数据表的键
|
59
|
+
columns_in = ', '.join(columns_in)
|
60
|
+
if '日期' in cols_exist: # 不论是否指定, 只要数据表有日期,则执行
|
61
|
+
sql = (f"SELECT {columns_in} FROM {db_name}.{tabel_name} "
|
62
|
+
f"WHERE {'日期'} BETWEEN '{start_date}' AND '{end_date}'")
|
63
|
+
else: # 数据表没有日期列时,返回指定列的所有数据
|
64
|
+
sql = f"SELECT {columns_in} FROM {db_name}.{tabel_name}"
|
65
|
+
else: # 没有指定获取列时
|
66
|
+
if '日期' in cols_exist: # 但数据表有日期,仍然执行
|
67
|
+
columns_in = ', '.join(cols_exist)
|
68
|
+
sql = (f"SELECT {columns_in} FROM {db_name}.{tabel_name} "
|
69
|
+
f"WHERE {'日期'} BETWEEN '{start_date}' AND '{end_date}'")
|
70
|
+
else: # 没有指定获取列,且数据表也没有日期列,则返回全部列的全部数据
|
71
|
+
sql = f"SELECT * FROM {db_name}.{tabel_name}"
|
72
|
+
cursor.execute(sql)
|
73
|
+
rows = cursor.fetchall() # 获取查询结果
|
74
|
+
columns = [desc[0] for desc in cursor.description]
|
75
|
+
df = pd.DataFrame(rows, columns=columns) # 转为 df
|
76
|
+
except Exception as e:
|
77
|
+
print(f'{e}')
|
78
|
+
return df
|
79
|
+
finally:
|
80
|
+
connection.close()
|
81
|
+
|
82
|
+
if len(df) == 0:
|
83
|
+
print(f'database: {db_name}, table: {tabel_name} 查询的数据为空')
|
84
|
+
return df
|
85
|
+
|
86
|
+
def check_infos(self, db_name, tabel_name) -> bool:
|
87
|
+
""" 检查数据库、数据表是否存在 """
|
39
88
|
connection = pymysql.connect(**self.config) # 连接数据库
|
40
89
|
try:
|
41
90
|
with connection.cursor() as cursor:
|
91
|
+
# 1. 检查数据库是否存在
|
42
92
|
cursor.execute(f"SHOW DATABASES LIKE '{db_name}'") # 检查数据库是否存在
|
43
93
|
database_exists = cursor.fetchone()
|
44
94
|
if not database_exists:
|
45
95
|
print(f"Database <{db_name}>: 数据库不存在")
|
96
|
+
return False
|
46
97
|
finally:
|
47
98
|
connection.close() # 这里要断开连接
|
48
|
-
time.sleep(0.2)
|
49
99
|
|
50
100
|
self.config.update({'database': db_name}) # 添加更新 config 字段
|
51
101
|
connection = pymysql.connect(**self.config) # 重新连接数据库
|
52
102
|
try:
|
53
103
|
with connection.cursor() as cursor:
|
54
|
-
#
|
104
|
+
# 2. 查询表是否存在
|
55
105
|
sql = f"SHOW TABLES LIKE '{tabel_name}'"
|
56
106
|
cursor.execute(sql)
|
57
107
|
if not cursor.fetchone():
|
58
108
|
print(f'{db_name} -> <{tabel_name}>: 表不存在')
|
59
|
-
return
|
60
|
-
|
61
|
-
# 查询列
|
62
|
-
for col in projection:
|
63
|
-
sql = ('SELECT 1 FROM information_schema.columns WHERE table_schema = %s AND table_name = %s AND '
|
64
|
-
'column_name = %s')
|
65
|
-
cursor.execute(sql, (db_name, {tabel_name}, col))
|
66
|
-
if cursor.fetchone() is None: # 移除不存在的列
|
67
|
-
projection.remove(col)
|
109
|
+
return False
|
110
|
+
return True
|
68
111
|
except Exception as e:
|
69
112
|
print(e)
|
70
|
-
return
|
113
|
+
return False
|
71
114
|
finally:
|
72
115
|
connection.close() # 断开连接
|
73
116
|
|
74
|
-
# before_time = time.time()
|
75
|
-
# 读取数据
|
76
|
-
self.config.update({'database': db_name})
|
77
|
-
connection = pymysql.connect(**self.config) # 重新连接数据库
|
78
|
-
try:
|
79
|
-
with connection.cursor() as cursor:
|
80
|
-
if not projection: # 如果未指定,则查询所有列,获取 cols_exist
|
81
|
-
sql = 'SELECT COLUMN_NAME FROM information_schema.columns WHERE table_schema = %s AND table_name = %s'
|
82
|
-
cursor.execute(sql, (db_name, {tabel_name}))
|
83
|
-
columns = cursor.fetchall()
|
84
|
-
cols_exist = [col['COLUMN_NAME'] for col in columns]
|
85
|
-
|
86
|
-
if '日期' in projection or '日期' in cols_exist: # 指定含日期的 projection 或者未指定 projection 但表中有日期列
|
87
|
-
sql = f"SELECT * FROM {db_name}.{tabel_name} WHERE {'日期'} BETWEEN '%s' AND '%s'" % (start_date, end_date)
|
88
|
-
elif projection: # 指定未含日期的 projection
|
89
|
-
sql = f"SELECT '%s' FROM {db_name}.{tabel_name}" % (', '.join(projection))
|
90
|
-
else: # 未指定 projection 且表中无日期
|
91
|
-
sql = f"SELECT * FROM {db_name}.{tabel_name}"
|
92
|
-
cursor.execute(sql)
|
93
|
-
rows = cursor.fetchall() # 获取查询结果
|
94
|
-
columns = [desc[0] for desc in cursor.description]
|
95
|
-
df = pd.DataFrame(rows, columns=columns)
|
96
|
-
except Exception as e:
|
97
|
-
print(f'{e} {db_name} -> <{tabel_name}>: 表不存在')
|
98
|
-
return df
|
99
|
-
finally:
|
100
|
-
connection.close()
|
101
|
-
|
102
|
-
if len(df) == 0:
|
103
|
-
print(f'database: {db_name}, table: {tabel_name} 查询的数据为空')
|
104
|
-
# else:
|
105
|
-
# now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S ")
|
106
|
-
# cost_time = int(time.time() - before_time)
|
107
|
-
# if cost_time < 1:
|
108
|
-
# cost_time = round(time.time() - before_time, 2)
|
109
|
-
# print(f'{now}mysql ({self.host}) 表: {tabel_name} 获取数据长度: {len(df)}, 用时: {cost_time} 秒')
|
110
|
-
return df
|
111
|
-
|
112
|
-
|
113
|
-
def year_month_day(start_date, end_date):
|
114
|
-
"""
|
115
|
-
使用date_range函数和DataFrame来获取从start_date至end_date之间的所有年月日
|
116
|
-
calendar.monthrange: 获取当月第一个工作日的星期值(0,6) 以及当月天数
|
117
|
-
"""
|
118
|
-
# 替换年月日中的日, 以便即使传入当月日期也有返回值
|
119
|
-
try:
|
120
|
-
start_date = f'{pd.to_datetime(start_date).year}-{pd.to_datetime(start_date).month}-01'
|
121
|
-
except Exception as e:
|
122
|
-
print(e)
|
123
|
-
return []
|
124
|
-
# 使用pandas的date_range创建一个日期范围,频率为'MS'代表每月开始
|
125
|
-
date_range = pd.date_range(start=start_date, end=end_date, freq='MS')
|
126
|
-
# 转换格式
|
127
|
-
year_months = date_range.strftime('%Y-%m').drop_duplicates().sort_values()
|
128
|
-
|
129
|
-
results = []
|
130
|
-
for year_month in year_months:
|
131
|
-
year = re.findall(r'(\d{4})', year_month)[0]
|
132
|
-
month = re.findall(r'\d{4}-(\d{2})', year_month)[0]
|
133
|
-
s, d = calendar.monthrange(int(year), int(month))
|
134
|
-
results.append({'起始日期': f'{year_month}-01', '结束日期': f'{year_month}-{d}'})
|
135
|
-
|
136
|
-
return results # start_date至end_date之间的所有年月日
|
137
|
-
|
138
|
-
|
139
|
-
def download_datas(tabel_name, save_path, start_date):
|
140
|
-
username, password, host, port = get_myconf.select_config_values(target_service='company', database='mysql')
|
141
|
-
print(username, password, host, port)
|
142
|
-
m = MysqlUpload(username=username, password=password, host=host, port=port)
|
143
|
-
m.port = port
|
144
|
-
results = year_month_day(start_date=start_date, end_date='today')
|
145
|
-
# print(results)
|
146
|
-
for result in results:
|
147
|
-
start_date = result['起始日期']
|
148
|
-
end_date = result['结束日期']
|
149
|
-
# print(start_date, end_date)
|
150
|
-
df = m.data_to_df(db_name='市场数据2', tabel_name=tabel_name, start_date=start_date, end_date=end_date)
|
151
|
-
if len(df) == 0:
|
152
|
-
continue
|
153
|
-
path = os.path.join(save_path, f'{tabel_name}_{str(start_date)}_{str(end_date)}.csv')
|
154
|
-
df['日期'] = df['日期'].apply(lambda x: re.sub(' .*', '', str(x)))
|
155
|
-
df.to_csv(path, index=False, encoding='utf-8_sig', header=True)
|
156
|
-
|
157
117
|
|
158
118
|
if __name__ == '__main__':
|
159
|
-
# username, password, host, port = get_myconf.select_config_values(target_service='company', database='mysql')
|
160
|
-
# print(username, password, host, port)
|
161
|
-
|
162
119
|
username, password, host, port = get_myconf.select_config_values(target_service='company', database='mysql')
|
163
|
-
|
164
|
-
df = qd.data_to_df(db_name='市场数据2', tabel_name='市场排行_店铺', start_date='2024-08-13', end_date='2024-08-31')
|
165
|
-
print(df)
|
120
|
+
print(username, password, host, port)
|
@@ -0,0 +1,38 @@
|
|
1
|
+
# -*- coding:utf-8 -*-
|
2
|
+
import warnings
|
3
|
+
import pandas as pd
|
4
|
+
import calendar
|
5
|
+
|
6
|
+
warnings.filterwarnings('ignore')
|
7
|
+
|
8
|
+
|
9
|
+
def year_month_day(start_date, end_date):
|
10
|
+
"""
|
11
|
+
使用date_range函数和DataFrame来获取从start_date至end_date之间的所有年月日
|
12
|
+
calendar.monthrange: 获取当月第一个工作日的星期值(0,6) 以及当月天数
|
13
|
+
返回值: [{'起始日期': '2025-05-01', '结束日期': '2025-05-31'}, {'起始日期': '2025-06-01', '结束日期': '2025-06-30'}]
|
14
|
+
"""
|
15
|
+
# 替换年月日中的日, 以便即使传入当月日期也有返回值
|
16
|
+
try:
|
17
|
+
start_date = f'{pd.to_datetime(start_date).year}-{pd.to_datetime(start_date).month}-01'
|
18
|
+
except Exception as e:
|
19
|
+
print(e)
|
20
|
+
return []
|
21
|
+
# 使用pandas的date_range创建一个日期范围,频率为'MS'代表每月开始
|
22
|
+
date_range = pd.date_range(start=start_date, end=end_date, freq='MS')
|
23
|
+
# 转换格式
|
24
|
+
year_months = date_range.strftime('%Y-%m').drop_duplicates().sort_values()
|
25
|
+
|
26
|
+
results = []
|
27
|
+
for year_month in year_months:
|
28
|
+
year = re.findall(r'(\d{4})', year_month)[0]
|
29
|
+
month = re.findall(r'\d{4}-(\d{2})', year_month)[0]
|
30
|
+
s, d = calendar.monthrange(int(year), int(month))
|
31
|
+
results.append({'起始日期': f'{year_month}-01', '结束日期': f'{year_month}-{d}'})
|
32
|
+
|
33
|
+
return results # start_date至end_date之间的所有年月日
|
34
|
+
|
35
|
+
|
36
|
+
if __name__ == '__main__':
|
37
|
+
results = year_month_day(start_date='2025-05-01', end_date='2025-08-01')
|
38
|
+
print(results)
|
@@ -1,8 +1,8 @@
|
|
1
1
|
mdbq/__init__.py,sha256=Il5Q9ATdX8yXqVxtP_nYqUhExzxPC_qk_WXQ_4h0exg,16
|
2
2
|
mdbq/__version__.py,sha256=y9Mp_8x0BCZSHsdLT_q5tX9wZwd5QgqrSIENLrb6vXA,62
|
3
3
|
mdbq/aggregation/__init__.py,sha256=EeDqX2Aml6SPx8363J-v1lz0EcZtgwIBYyCJV6CcEDU,40
|
4
|
-
mdbq/aggregation/aggregation.py,sha256=
|
5
|
-
mdbq/aggregation/query_data.py,sha256=
|
4
|
+
mdbq/aggregation/aggregation.py,sha256=7Id0cZ5QR7rPR9srbNRv78lGBwQ7pQre65qYIhu89Ms,59498
|
5
|
+
mdbq/aggregation/query_data.py,sha256=9E4dbeQAq7r1srlszP27X3jFiKtMmFc6lP965GHjQms,13368
|
6
6
|
mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
|
7
7
|
mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
|
8
8
|
mdbq/clean/__init__.py,sha256=A1d6x3L27j4NtLgiFV5TANwEkLuaDfPHDQNrPBbNWtU,41
|
@@ -18,7 +18,8 @@ mdbq/mongo/__init__.py,sha256=SILt7xMtQIQl_m-ik9WLtJSXIVf424iYgCfE_tnQFbw,13
|
|
18
18
|
mdbq/mongo/mongo.py,sha256=hF93-kP2lxK4WY1KCdBBszLQ_I7W0mQQxZ7t4qU2w3A,32930
|
19
19
|
mdbq/mysql/__init__.py,sha256=A_DPJyAoEvTSFojiI2e94zP0FKtCkkwKP1kYUCSyQzo,11
|
20
20
|
mdbq/mysql/mysql.py,sha256=H9onFYKSYRjdXghK_29Aj7vgvUgDHexJjIECrdxLbE0,29925
|
21
|
-
mdbq/mysql/s_query.py,sha256=
|
21
|
+
mdbq/mysql/s_query.py,sha256=bRnW8Cpy4fSsbMhzGCvjiK2kin9uamVumJC3nLAyjMg,5213
|
22
|
+
mdbq/mysql/year_month_day.py,sha256=VgewoE2pJxK7ErjfviL_SMTN77ki8GVbTUcao3vFUCE,1523
|
22
23
|
mdbq/other/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
|
23
24
|
mdbq/other/porxy.py,sha256=UHfgEyXugogvXgsG68a7QouUCKaohTKKkI4RN-kYSdQ,4961
|
24
25
|
mdbq/other/pov_city.py,sha256=AEOmCOzOwyjHi9LLZWPKi6DUuSC-_M163664I52u9qw,21050
|
@@ -27,7 +28,7 @@ mdbq/pbix/__init__.py,sha256=Trtfaynu9RjoTyLLYBN2xdRxTvm_zhCniUkVTAYwcjo,24
|
|
27
28
|
mdbq/pbix/pbix_refresh.py,sha256=JUjKW3bNEyoMVfVfo77UhguvS5AWkixvVhDbw4_MHco,2396
|
28
29
|
mdbq/pbix/refresh_all.py,sha256=wulHs4rivf4Mi0Pii2QR5Nk9-TBcvSwnCB_WH9QULKE,5939
|
29
30
|
mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
|
30
|
-
mdbq-0.0.
|
31
|
-
mdbq-0.0.
|
32
|
-
mdbq-0.0.
|
33
|
-
mdbq-0.0.
|
31
|
+
mdbq-0.0.8.dist-info/METADATA,sha256=dVu6kA6RtVWnfsNTWXnOv_d1TmKhM4Gw6PrypX9MF0E,245
|
32
|
+
mdbq-0.0.8.dist-info/WHEEL,sha256=cpQTJ5IWu9CdaPViMhC9YzF8gZuS5-vlfoFihTBC86A,91
|
33
|
+
mdbq-0.0.8.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
|
34
|
+
mdbq-0.0.8.dist-info/RECORD,,
|
File without changes
|