mct-nightly 2.4.0.20250622.655__py3-none-any.whl → 2.4.0.20250624.605__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mct-nightly
3
- Version: 2.4.0.20250622.655
3
+ Version: 2.4.0.20250624.605
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Author-email: ssi-dnn-dev@sony.com
6
6
  Classifier: Programming Language :: Python :: 3
@@ -1,5 +1,5 @@
1
- mct_nightly-2.4.0.20250622.655.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
2
- model_compression_toolkit/__init__.py,sha256=jlu-tAXHem5X1s9zgfLRdAvKIRDb-r4gKkYgBEgw-OY,1557
1
+ mct_nightly-2.4.0.20250624.605.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
2
+ model_compression_toolkit/__init__.py,sha256=ptUqfuUK307Is3CAZ51Qlt2sDHnhvAP-BmXvOVr1vbw,1557
3
3
  model_compression_toolkit/constants.py,sha256=KNgiNLpsMgSYyXMNEbHXd4bFNerQc1D6HH3vpbUq_Gs,4086
4
4
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
5
5
  model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
@@ -69,7 +69,7 @@ model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantizati
69
69
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py,sha256=MMb7qTwk_141-mxz1xch3lMb5F6eQjBf_uILcqXs1wE,4887
70
70
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py,sha256=XnSNyG6ZLrIW4Y4_t-ggFvzBjag2RNejfiwbGYfk_Rg,6155
71
71
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py,sha256=xdJ8v7M6De1S_F-kJwQFVxzDkPKRJe9sX9nQPPpfrZU,28326
72
- model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py,sha256=MY8df-c_kITEr_7hOctaxhdiq29hSTA0La9Qo0oTJJY,9678
72
+ model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py,sha256=-4RjoWjCUstJes8b45z33ZYy9vTwI7n953LOWTvhvwE,9840
73
73
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
74
74
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py,sha256=PKkhc5q8pEPnNLXwo3U56EOCfYnPXIvPs0LlCGZOoKU,4426
75
75
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py,sha256=gs8xjQCbk16oOzmtOVc_vO7cl8SCHFe4xZdPW-ePzS4,39948
@@ -529,7 +529,7 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
529
529
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=Y0oBl8qPFsdNrK49XczwmVacInJcOPHslVnFBs-iTCc,3742
530
530
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
531
531
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=n0HvWBzkBkUJZlS3WeynhpsRTps2qQkjlq7luliBHNU,9627
532
- mct_nightly-2.4.0.20250622.655.dist-info/METADATA,sha256=3Zc734VAmy4YkQRSYZLYVnc4tLAiM_At_Eiu31d3IYg,25087
533
- mct_nightly-2.4.0.20250622.655.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
534
- mct_nightly-2.4.0.20250622.655.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
535
- mct_nightly-2.4.0.20250622.655.dist-info/RECORD,,
532
+ mct_nightly-2.4.0.20250624.605.dist-info/METADATA,sha256=3keDUJm6-DNc56fOyYPJBDCxIO9Rfavef0GH3Dprn6A,25087
533
+ mct_nightly-2.4.0.20250624.605.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
534
+ mct_nightly-2.4.0.20250624.605.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
535
+ mct_nightly-2.4.0.20250624.605.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.4.0.20250622.000655"
30
+ __version__ = "2.4.0.20250624.000605"
@@ -50,9 +50,12 @@ def greedy_solution_refinement_procedure(mp_solution: Dict[BaseNode, int],
50
50
  if target_resource_utilization.bops_restricted():
51
51
  Logger.info(f'Target resource utilization constraint BOPs - Skipping MP greedy solution refinement')
52
52
  return mp_solution
53
-
54
53
  assert search_manager.using_virtual_graph is False
55
54
 
55
+ tru = target_resource_utilization
56
+ activation_restricted = tru.activation_restricted() or tru.total_mem_restricted() or tru.bops_restricted()
57
+ weights_restricted = tru.weight_restricted() or tru.total_mem_restricted() or tru.bops_restricted()
58
+
56
59
  new_solution = mp_solution.copy()
57
60
  changed = True
58
61
 
@@ -62,7 +65,7 @@ def greedy_solution_refinement_procedure(mp_solution: Dict[BaseNode, int],
62
65
  nodes_next_candidate = {}
63
66
 
64
67
  for node in search_manager.mp_topo_configurable_nodes:
65
- if new_solution[node] == 0:
68
+ if new_solution[node] == node.find_max_candidate_index():
66
69
  # layer has max config in the given solution, nothing to optimize
67
70
  continue
68
71
 
@@ -71,9 +74,8 @@ def greedy_solution_refinement_procedure(mp_solution: Dict[BaseNode, int],
71
74
  # only weights kernel attribute is quantized with weights mixed precision
72
75
  valid_candidates = _get_valid_candidates_indices(node_candidates,
73
76
  new_solution[node],
74
- target_resource_utilization.activation_restricted(),
75
- target_resource_utilization.weight_restricted()
76
- )
77
+ activation_restricted,
78
+ weights_restricted)
77
79
 
78
80
  # Create a list of ru for the valid candidates.
79
81
  updated_ru = []