mct-nightly 2.4.0.20250605.606__py3-none-any.whl → 2.4.0.20250606.608__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.4.0.20250605.606.dist-info → mct_nightly-2.4.0.20250606.608.dist-info}/METADATA +1 -1
- {mct_nightly-2.4.0.20250605.606.dist-info → mct_nightly-2.4.0.20250606.608.dist-info}/RECORD +8 -8
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +6 -4
- model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +12 -3
- {mct_nightly-2.4.0.20250605.606.dist-info → mct_nightly-2.4.0.20250606.608.dist-info}/WHEEL +0 -0
- {mct_nightly-2.4.0.20250605.606.dist-info → mct_nightly-2.4.0.20250606.608.dist-info}/licenses/LICENSE.md +0 -0
- {mct_nightly-2.4.0.20250605.606.dist-info → mct_nightly-2.4.0.20250606.608.dist-info}/top_level.txt +0 -0
{mct_nightly-2.4.0.20250605.606.dist-info → mct_nightly-2.4.0.20250606.608.dist-info}/RECORD
RENAMED
@@ -1,5 +1,5 @@
|
|
1
|
-
mct_nightly-2.4.0.
|
2
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
mct_nightly-2.4.0.20250606.608.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
2
|
+
model_compression_toolkit/__init__.py,sha256=9CwoPA6HPT2IzZKkm46V6xVFzGKMN6PX0_5F9VGlLIs,1557
|
3
3
|
model_compression_toolkit/constants.py,sha256=KNgiNLpsMgSYyXMNEbHXd4bFNerQc1D6HH3vpbUq_Gs,4086
|
4
4
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
5
5
|
model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
|
@@ -334,9 +334,9 @@ model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py,
|
|
334
334
|
model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py,sha256=NzcX7rxLk__Kpuim_VXaOHS4tyiRtRBoERPE00GbdfA,5862
|
335
335
|
model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py,sha256=qXXkv3X_wb7t622EOHwXIxfGLGaDqh0T0y4UxREi4Bo,1976
|
336
336
|
model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py,sha256=uZ2RigbY9O2PJ0Il8wPpS_s7frgg9WUGd_SHeKGyl1A,699
|
337
|
-
model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py,sha256=
|
337
|
+
model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py,sha256=9adOGG1nyviNzuL-1aJXyL0c_VQllSZWiG2gR-puywo,6420
|
338
338
|
model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py,sha256=bPevy6OBqng41PqytBR55e6cBEuyrUS0H8dWX4zgjQ4,967
|
339
|
-
model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=
|
339
|
+
model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py,sha256=5S3lyNVc3F62mvS8Q-RTmgQXWI6GWZ5YRvjG4qFy2MM,9520
|
340
340
|
model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py,sha256=ksWV2A-Njo-wAxQ_Ye2sLIZXBWJ_WNyjT7-qFFwvV2o,2897
|
341
341
|
model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py,sha256=7xuUrHPMiifn23sWfeiqR9wkYhm8EweDRL_vF-JSxMY,6642
|
342
342
|
model_compression_toolkit/exporter/model_wrapper/__init__.py,sha256=7CF2zvpTrIEm8qnbuHnLZyTZkwBBxV24V8QA0oxGbh0,1187
|
@@ -529,7 +529,7 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
529
529
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
|
530
530
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
531
531
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
532
|
-
mct_nightly-2.4.0.
|
533
|
-
mct_nightly-2.4.0.
|
534
|
-
mct_nightly-2.4.0.
|
535
|
-
mct_nightly-2.4.0.
|
532
|
+
mct_nightly-2.4.0.20250606.608.dist-info/METADATA,sha256=Mw8gC_XJl-ejfkG9tF7jLIdcjPgG4Aa2Vl7ZhS01Y6E,25087
|
533
|
+
mct_nightly-2.4.0.20250606.608.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
534
|
+
mct_nightly-2.4.0.20250606.608.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
535
|
+
mct_nightly-2.4.0.20250606.608.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.4.0.
|
30
|
+
__version__ = "2.4.0.20250606.000608"
|
@@ -56,7 +56,7 @@ def find_and_assign_metadata_attr(model: torch.nn.Module, attr_name: str = 'meta
|
|
56
56
|
f"Only the first one was assigned to 'model.metadata'.")
|
57
57
|
|
58
58
|
|
59
|
-
def _set_quantized_weights_in_wrapper(layer:PytorchQuantizationWrapper):
|
59
|
+
def _set_quantized_weights_in_wrapper(layer: PytorchQuantizationWrapper):
|
60
60
|
"""
|
61
61
|
Sets the quantized weights in the provided PytorchQuantizationWrapper layer.
|
62
62
|
Replaces the original weights in the layer with the quantized weights.
|
@@ -124,7 +124,7 @@ class BasePyTorchExporter(Exporter):
|
|
124
124
|
self.model = copy.deepcopy(self.model)
|
125
125
|
self.repr_dataset = repr_dataset
|
126
126
|
|
127
|
-
def _substitute_fully_quantized_model(self):
|
127
|
+
def _substitute_fully_quantized_model(self, replace_wrapped=True):
|
128
128
|
"""
|
129
129
|
Substitution for pytorch "fully-quantized" models. It first uses the weight quantizers
|
130
130
|
in PytorchQuantizationWrapper layers to quantize the weights and set them in the layer.
|
@@ -136,8 +136,9 @@ class BasePyTorchExporter(Exporter):
|
|
136
136
|
if isinstance(layer, PytorchQuantizationWrapper):
|
137
137
|
_set_quantized_weights_in_wrapper(layer)
|
138
138
|
|
139
|
-
|
140
|
-
|
139
|
+
if replace_wrapped:
|
140
|
+
# Replace PytorchQuantizationWrapper layers with their internal layers
|
141
|
+
self._replace_wrapped_with_unwrapped()
|
141
142
|
|
142
143
|
def _replace_wrapped_with_unwrapped(self):
|
143
144
|
"""
|
@@ -148,3 +149,4 @@ class BasePyTorchExporter(Exporter):
|
|
148
149
|
for name, module in self.model.named_children():
|
149
150
|
if isinstance(module, PytorchQuantizationWrapper):
|
150
151
|
setattr(self.model, name, module.layer)
|
152
|
+
|
model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py
CHANGED
@@ -73,6 +73,15 @@ if FOUND_ONNX:
|
|
73
73
|
Returns:
|
74
74
|
Fake-quant PyTorch model.
|
75
75
|
"""
|
76
|
+
# List all activation quantization holders with num_bits>8 and replace them with Identity, because
|
77
|
+
# ONNX doesn't support quantization of more than 8 bits for torch.fake_quantize_per_tensor_affine.
|
78
|
+
act_holder_list = [n for n, m in self.model.named_modules()
|
79
|
+
if isinstance(m, PytorchActivationQuantizationHolder) and
|
80
|
+
m.activation_holder_quantizer.num_bits > 8]
|
81
|
+
for act_holder in act_holder_list: # pragma: no cover
|
82
|
+
delattr(self.model, act_holder)
|
83
|
+
setattr(self.model, act_holder, torch.nn.Identity())
|
84
|
+
|
76
85
|
for layer in self.model.children():
|
77
86
|
self.is_layer_exportable_fn(layer)
|
78
87
|
# Set reuse for weight quantizers if quantizer is reused
|
@@ -89,7 +98,7 @@ if FOUND_ONNX:
|
|
89
98
|
if self._use_onnx_custom_quantizer_ops:
|
90
99
|
self._enable_onnx_custom_ops_export()
|
91
100
|
else:
|
92
|
-
self._substitute_fully_quantized_model()
|
101
|
+
self._substitute_fully_quantized_model(replace_wrapped=False)
|
93
102
|
|
94
103
|
if self._use_onnx_custom_quantizer_ops:
|
95
104
|
Logger.info(f"Exporting onnx model with MCTQ quantizers: {self.save_model_path}")
|
@@ -166,6 +175,6 @@ if FOUND_ONNX:
|
|
166
175
|
wq.enable_custom_impl()
|
167
176
|
|
168
177
|
else:
|
169
|
-
def FakelyQuantONNXPyTorchExporter(*args, **kwargs):
|
178
|
+
def FakelyQuantONNXPyTorchExporter(*args, **kwargs): # pragma: no cover
|
170
179
|
Logger.critical("ONNX must be installed to use 'FakelyQuantONNXPyTorchExporter'. "
|
171
|
-
"The 'onnx' package is missing.")
|
180
|
+
"The 'onnx' package is missing.")
|
File without changes
|
File without changes
|
{mct_nightly-2.4.0.20250605.606.dist-info → mct_nightly-2.4.0.20250606.608.dist-info}/top_level.txt
RENAMED
File without changes
|