mct-nightly 2.3.0.20250415.557__py3-none-any.whl → 2.3.0.20250416.541__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250415.557
3
+ Version: 2.3.0.20250416.541
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -1,5 +1,5 @@
1
- mct_nightly-2.3.0.20250415.557.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
2
- model_compression_toolkit/__init__.py,sha256=0HvKA_YR0Kpy00hpXHDhBtb6kS5hRq64d6L3f-cjcQM,1557
1
+ mct_nightly-2.3.0.20250416.541.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
2
+ model_compression_toolkit/__init__.py,sha256=AeZ2o5FMPLxX0sepHjLsV8WP2kgUvZWHt78DlPDh7u8,1557
3
3
  model_compression_toolkit/constants.py,sha256=2ltuH-gdaLZoZV4CPUgKjC3S9ojz2z4OTVdenyVEypU,3912
4
4
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
5
5
  model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
@@ -439,7 +439,7 @@ model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema
439
439
  model_compression_toolkit/target_platform_capabilities/schema/schema_compatability.py,sha256=TtMPbiibV6Hk53nl5Y_ctfpI6mSbd8VVH9fxnv5j9eM,4430
440
440
  model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py,sha256=vBkXxVJagm9JKB9cdm4Pvi7u_luriXUjvNn0-m8Zr0k,4653
441
441
  model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=oWKNQnnz04kmijmdWtRyXgVXbJ6BG_V_bUBz_MfUM94,27116
442
- model_compression_toolkit/target_platform_capabilities/schema/v2.py,sha256=0lYfOs6Dcoi8pLciCPXgiJDeo9LHP0quccWKe7-ZR2Y,4571
442
+ model_compression_toolkit/target_platform_capabilities/schema/v2.py,sha256=FiSkRUSuEPnJxvyDuRTwv2gwY4xveSp1hLtWKEFa8zc,6110
443
443
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py,sha256=XjNws3zoiJkeH4ixKqrLA5xBvpv5rq31qX7wYQjNpZM,1447
444
444
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py,sha256=HJ8uc3PFfyxg-WpVXPBg4mGaox8Z9bRqtQNbRfIyAk4,3745
445
445
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py,sha256=Ehwpd_sL6zxmJFpJugOdN9uNxNX05nijvOCilNfHnFs,7162
@@ -528,7 +528,7 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
528
528
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
529
529
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
530
530
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
531
- mct_nightly-2.3.0.20250415.557.dist-info/METADATA,sha256=xAD7AYKh0CWSUycRyXvOiV0F5B8CkdsFa1S5Tq0k63I,25413
532
- mct_nightly-2.3.0.20250415.557.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
533
- mct_nightly-2.3.0.20250415.557.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
534
- mct_nightly-2.3.0.20250415.557.dist-info/RECORD,,
531
+ mct_nightly-2.3.0.20250416.541.dist-info/METADATA,sha256=r1uKB8w4EULCSj-_wL_b-doM7GuOlu4NeTVo11pYUj0,25413
532
+ mct_nightly-2.3.0.20250416.541.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
533
+ mct_nightly-2.3.0.20250416.541.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
534
+ mct_nightly-2.3.0.20250416.541.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.3.0.20250415.000557"
30
+ __version__ = "2.3.0.20250416.000541"
@@ -13,6 +13,7 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
  import pprint
16
+ from enum import Enum
16
17
  from typing import Dict, Any, Tuple, Optional
17
18
 
18
19
  from pydantic import BaseModel, root_validator, model_validator, ConfigDict
@@ -29,8 +30,72 @@ from model_compression_toolkit.target_platform_capabilities.schema.v1 import (
29
30
  OperatorsSetBase,
30
31
  OperatorsSet,
31
32
  OperatorSetGroup,
32
- Fusing,
33
- OperatorSetNames)
33
+ Fusing)
34
+
35
+
36
+ class OperatorSetNames(str, Enum):
37
+ CONV = "Conv"
38
+ DEPTHWISE_CONV = "DepthwiseConv2D"
39
+ CONV_TRANSPOSE = "ConvTranspose"
40
+ FULLY_CONNECTED = "FullyConnected"
41
+ CONCATENATE = "Concatenate"
42
+ STACK = "Stack"
43
+ UNSTACK = "Unstack"
44
+ GATHER = "Gather"
45
+ EXPAND = "Expend"
46
+ BATCH_NORM = "BatchNorm"
47
+ L2NORM = "L2Norm"
48
+ RELU = "ReLU"
49
+ RELU6 = "ReLU6"
50
+ LEAKY_RELU = "LeakyReLU"
51
+ ELU = "Elu"
52
+ HARD_TANH = "HardTanh"
53
+ ADD = "Add"
54
+ SUB = "Sub"
55
+ MUL = "Mul"
56
+ DIV = "Div"
57
+ MIN = "Min"
58
+ MAX = "Max"
59
+ PRELU = "PReLU"
60
+ ADD_BIAS = "AddBias"
61
+ SWISH = "Swish"
62
+ SIGMOID = "Sigmoid"
63
+ SOFTMAX = "Softmax"
64
+ LOG_SOFTMAX = "LogSoftmax"
65
+ TANH = "Tanh"
66
+ GELU = "Gelu"
67
+ HARDSIGMOID = "HardSigmoid"
68
+ HARDSWISH = "HardSwish"
69
+ FLATTEN = "Flatten"
70
+ GET_ITEM = "GetItem"
71
+ RESHAPE = "Reshape"
72
+ UNSQUEEZE = "Unsqueeze"
73
+ SQUEEZE = "Squeeze"
74
+ PERMUTE = "Permute"
75
+ TRANSPOSE = "Transpose"
76
+ DROPOUT = "Dropout"
77
+ SPLIT_CHUNK = "SplitChunk"
78
+ MAXPOOL = "MaxPool"
79
+ AVGPOOL = "AvgPool"
80
+ SIZE = "Size"
81
+ SHAPE = "Shape"
82
+ EQUAL = "Equal"
83
+ ARGMAX = "ArgMax"
84
+ TOPK = "TopK"
85
+ FAKE_QUANT = "FakeQuant"
86
+ COMBINED_NON_MAX_SUPPRESSION = "CombinedNonMaxSuppression"
87
+ ZERO_PADDING2D = "ZeroPadding2D"
88
+ CAST = "Cast"
89
+ RESIZE = "Resize"
90
+ PAD = "Pad"
91
+ FOLD = "Fold"
92
+ STRIDED_SLICE = "StridedSlice"
93
+ SSD_POST_PROCESS = "SSDPostProcess"
94
+ EXP = "Exp"
95
+
96
+ @classmethod
97
+ def get_values(cls):
98
+ return [v.value for v in cls]
34
99
 
35
100
 
36
101
  class TargetPlatformCapabilities(BaseModel):
@@ -109,4 +174,3 @@ class TargetPlatformCapabilities(BaseModel):
109
174
  Display the TargetPlatformCapabilities.
110
175
  """
111
176
  pprint.pprint(self.get_info(), sort_dicts=False)
112
-