mct-nightly 2.3.0.20250403.518__py3-none-any.whl → 2.3.0.20250405.519__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250403.518
3
+ Version: 2.3.0.20250405.519
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -1,5 +1,5 @@
1
- mct_nightly-2.3.0.20250403.518.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
2
- model_compression_toolkit/__init__.py,sha256=z7w2tRBoJC1dhCtnjEKyK834X-V0TBq_pKLiNWkHc5s,1557
1
+ mct_nightly-2.3.0.20250405.519.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
2
+ model_compression_toolkit/__init__.py,sha256=q-6vPTQu-LuGF_ciYO6xH7ip2LG_WgfTyo51-zRt4so,1557
3
3
  model_compression_toolkit/constants.py,sha256=2ltuH-gdaLZoZV4CPUgKjC3S9ojz2z4OTVdenyVEypU,3912
4
4
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
5
5
  model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
@@ -435,14 +435,14 @@ model_compression_toolkit/target_platform_capabilities/constants.py,sha256=BFSgD
435
435
  model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROBiXEIB3TU-bAFrnL3qbAsb1yuWPBAQ_CLOJbYUU,1827
436
436
  model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py,sha256=4ydTWWKv_PEOAFok2JtxFNj8rav-0IlqcXKF6lnhHNE,4157
437
437
  model_compression_toolkit/target_platform_capabilities/schema/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
438
- model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py,sha256=hf539WJ3nBGn0RnALXrKmAPnbhJ-VmWmLIa207x8b4M,541
438
+ model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py,sha256=PvO8eHxnb3A55gyExT5fZGnOUl3ce7BbbT5SPxCEXNo,541
439
439
  model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py,sha256=vBkXxVJagm9JKB9cdm4Pvi7u_luriXUjvNn0-m8Zr0k,4653
440
440
  model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=4CGpWENuOyjwaIMaGrFI0Act7jsSeT7m94pjrv91dxE,27516
441
- model_compression_toolkit/target_platform_capabilities/schema/v2.py,sha256=vUhCocA0EcjdR741Yv48W4Kr5Pq22Miebhm7F9GKb3Y,6086
441
+ model_compression_toolkit/target_platform_capabilities/schema/v2.py,sha256=yg0ZrsaqaS69lmDvxRrz636CRARzx_eZbokTMVHNEXc,4555
442
442
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py,sha256=XjNws3zoiJkeH4ixKqrLA5xBvpv5rq31qX7wYQjNpZM,1447
443
443
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py,sha256=HJ8uc3PFfyxg-WpVXPBg4mGaox8Z9bRqtQNbRfIyAk4,3745
444
- model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py,sha256=AE09QLE_QKwNqUTZbkZP9XLJStG1ECiTWmEGuXZTEsQ,7652
445
- model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py,sha256=-zbPmzQJal-1vZiQ6vIBBBnlEOB2DTb09koA0Aj4I_I,6396
444
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py,sha256=mxc3DBbUi-HDFgSx8Nmnyxr8SIdbx8lmtcRMsQl1BLE,7578
445
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py,sha256=8spnpqxVUv8WF9-PTukOLvJAFiNi01wNowUVIDqSj5I,6321
446
446
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py,sha256=jfhszvuD2Fyy6W2KjlLzXBQKFzTqGAaDZeFVr4-ONQw,8776
447
447
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py,sha256=_kFG0USYa6yzvLsi82_Vusv_KR8Hi7J1u680pPXECuo,2192
448
448
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py,sha256=UKzckLYLdBcFAptyKnVMwpPpfRkmF0SK1Kl0g0eGjQA,9710
@@ -527,7 +527,7 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
527
527
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
528
528
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
529
529
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
530
- mct_nightly-2.3.0.20250403.518.dist-info/METADATA,sha256=D6WPQRCnXD6lqzCblmPu_dLfulyf5bSMcbH-9mm_nNI,27098
531
- mct_nightly-2.3.0.20250403.518.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
532
- mct_nightly-2.3.0.20250403.518.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
533
- mct_nightly-2.3.0.20250403.518.dist-info/RECORD,,
530
+ mct_nightly-2.3.0.20250405.519.dist-info/METADATA,sha256=PHbbtoK9OgtSBmT1-3MirDEL_DgGZjTARyZ99aB_VUM,27098
531
+ mct_nightly-2.3.0.20250405.519.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
532
+ mct_nightly-2.3.0.20250405.519.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
533
+ mct_nightly-2.3.0.20250405.519.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.3.0.20250403.000518"
30
+ __version__ = "2.3.0.20250405.000519"
@@ -1,4 +1,4 @@
1
- import model_compression_toolkit.target_platform_capabilities.schema.v2 as schema
1
+ import model_compression_toolkit.target_platform_capabilities.schema.v1 as schema
2
2
 
3
3
  OperatorSetNames = schema.OperatorSetNames
4
4
  Signedness = schema.Signedness
@@ -30,72 +30,8 @@ from model_compression_toolkit.target_platform_capabilities.schema.v1 import (
30
30
  OperatorsSetBase,
31
31
  OperatorsSet,
32
32
  OperatorSetGroup,
33
- Fusing)
34
-
35
-
36
- class OperatorSetNames(str, Enum):
37
- CONV = "Conv"
38
- DEPTHWISE_CONV = "DepthwiseConv2D"
39
- CONV_TRANSPOSE = "ConvTranspose"
40
- FULLY_CONNECTED = "FullyConnected"
41
- CONCATENATE = "Concatenate"
42
- STACK = "Stack"
43
- UNSTACK = "Unstack"
44
- GATHER = "Gather"
45
- EXPAND = "Expend"
46
- BATCH_NORM = "BatchNorm"
47
- L2NORM = "L2Norm"
48
- RELU = "ReLU"
49
- RELU6 = "ReLU6"
50
- LEAKY_RELU = "LeakyReLU"
51
- ELU = "Elu"
52
- HARD_TANH = "HardTanh"
53
- ADD = "Add"
54
- SUB = "Sub"
55
- MUL = "Mul"
56
- DIV = "Div"
57
- MIN = "Min"
58
- MAX = "Max"
59
- PRELU = "PReLU"
60
- ADD_BIAS = "AddBias"
61
- SWISH = "Swish"
62
- SIGMOID = "Sigmoid"
63
- SOFTMAX = "Softmax"
64
- LOG_SOFTMAX = "LogSoftmax"
65
- TANH = "Tanh"
66
- GELU = "Gelu"
67
- HARDSIGMOID = "HardSigmoid"
68
- HARDSWISH = "HardSwish"
69
- FLATTEN = "Flatten"
70
- GET_ITEM = "GetItem"
71
- RESHAPE = "Reshape"
72
- UNSQUEEZE = "Unsqueeze"
73
- SQUEEZE = "Squeeze"
74
- PERMUTE = "Permute"
75
- TRANSPOSE = "Transpose"
76
- DROPOUT = "Dropout"
77
- SPLIT_CHUNK = "SplitChunk"
78
- MAXPOOL = "MaxPool"
79
- AVGPOOL = "AvgPool"
80
- SIZE = "Size"
81
- SHAPE = "Shape"
82
- EQUAL = "Equal"
83
- ARGMAX = "ArgMax"
84
- TOPK = "TopK"
85
- FAKE_QUANT = "FakeQuant"
86
- COMBINED_NON_MAX_SUPPRESSION = "CombinedNonMaxSuppression"
87
- BOX_DECODE = "BoxDecode"
88
- ZERO_PADDING2D = "ZeroPadding2D"
89
- CAST = "Cast"
90
- RESIZE = "Resize"
91
- PAD = "Pad"
92
- FOLD = "Fold"
93
- STRIDED_SLICE = "StridedSlice"
94
- SSD_POST_PROCESS = "SSDPostProcess"
95
-
96
- @classmethod
97
- def get_values(cls):
98
- return [v.value for v in cls]
33
+ Fusing,
34
+ OperatorSetNames)
99
35
 
100
36
 
101
37
  class TargetPlatformCapabilities(BaseModel):
@@ -93,7 +93,6 @@ class AttachTpcToKeras(AttachTpcToFramework):
93
93
  OperatorSetNames.TOPK: [tf.nn.top_k],
94
94
  OperatorSetNames.FAKE_QUANT: [tf.quantization.fake_quant_with_min_max_vars],
95
95
  OperatorSetNames.COMBINED_NON_MAX_SUPPRESSION: [tf.image.combined_non_max_suppression],
96
- OperatorSetNames.BOX_DECODE: [], # no such operator in keras
97
96
  OperatorSetNames.ZERO_PADDING2D: [ZeroPadding2D],
98
97
  OperatorSetNames.CAST: [tf.cast],
99
98
  OperatorSetNames.STRIDED_SLICE: [tf.strided_slice],
@@ -98,7 +98,6 @@ class AttachTpcToPytorch(AttachTpcToFramework):
98
98
  Eq('p', 2) | Eq('p', None))],
99
99
  OperatorSetNames.SSD_POST_PROCESS: [], # no such operator in pytorch
100
100
  OperatorSetNames.COMBINED_NON_MAX_SUPPRESSION: [], # no such operator in pytorch
101
- OperatorSetNames.BOX_DECODE: [] # no such operator in pytorch
102
101
  }
103
102
 
104
103
  pytorch_linear_attr_mapping = {KERNEL_ATTR: DefaultDict(default_value=PYTORCH_KERNEL),