mct-nightly 2.3.0.20250401.618__py3-none-any.whl → 2.3.0.20250402.536__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.3.0.20250401.618.dist-info → mct_nightly-2.3.0.20250402.536.dist-info}/METADATA +1 -1
- {mct_nightly-2.3.0.20250401.618.dist-info → mct_nightly-2.3.0.20250402.536.dist-info}/RECORD +10 -9
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +1 -1
- model_compression_toolkit/target_platform_capabilities/schema/v2.py +177 -0
- model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +1 -0
- model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +2 -1
- {mct_nightly-2.3.0.20250401.618.dist-info → mct_nightly-2.3.0.20250402.536.dist-info}/WHEEL +0 -0
- {mct_nightly-2.3.0.20250401.618.dist-info → mct_nightly-2.3.0.20250402.536.dist-info}/licenses/LICENSE.md +0 -0
- {mct_nightly-2.3.0.20250401.618.dist-info → mct_nightly-2.3.0.20250402.536.dist-info}/top_level.txt +0 -0
{mct_nightly-2.3.0.20250401.618.dist-info → mct_nightly-2.3.0.20250402.536.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.3.0.
|
3
|
+
Version: 2.3.0.20250402.536
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.3.0.20250401.618.dist-info → mct_nightly-2.3.0.20250402.536.dist-info}/RECORD
RENAMED
@@ -1,5 +1,5 @@
|
|
1
|
-
mct_nightly-2.3.0.
|
2
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
mct_nightly-2.3.0.20250402.536.dist-info/licenses/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
2
|
+
model_compression_toolkit/__init__.py,sha256=dhPx1u7eKO_zAY9CefOYP31YislX9FLOXxMFWv9PVJo,1557
|
3
3
|
model_compression_toolkit/constants.py,sha256=2ltuH-gdaLZoZV4CPUgKjC3S9ojz2z4OTVdenyVEypU,3912
|
4
4
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
5
5
|
model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
|
@@ -435,13 +435,14 @@ model_compression_toolkit/target_platform_capabilities/constants.py,sha256=BFSgD
|
|
435
435
|
model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROBiXEIB3TU-bAFrnL3qbAsb1yuWPBAQ_CLOJbYUU,1827
|
436
436
|
model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py,sha256=4ydTWWKv_PEOAFok2JtxFNj8rav-0IlqcXKF6lnhHNE,4157
|
437
437
|
model_compression_toolkit/target_platform_capabilities/schema/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
|
438
|
-
model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py,sha256=
|
438
|
+
model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py,sha256=hf539WJ3nBGn0RnALXrKmAPnbhJ-VmWmLIa207x8b4M,541
|
439
439
|
model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py,sha256=vBkXxVJagm9JKB9cdm4Pvi7u_luriXUjvNn0-m8Zr0k,4653
|
440
440
|
model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=4CGpWENuOyjwaIMaGrFI0Act7jsSeT7m94pjrv91dxE,27516
|
441
|
+
model_compression_toolkit/target_platform_capabilities/schema/v2.py,sha256=vUhCocA0EcjdR741Yv48W4Kr5Pq22Miebhm7F9GKb3Y,6086
|
441
442
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py,sha256=XjNws3zoiJkeH4ixKqrLA5xBvpv5rq31qX7wYQjNpZM,1447
|
442
443
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py,sha256=HJ8uc3PFfyxg-WpVXPBg4mGaox8Z9bRqtQNbRfIyAk4,3745
|
443
|
-
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py,sha256=
|
444
|
-
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py,sha256
|
444
|
+
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py,sha256=AE09QLE_QKwNqUTZbkZP9XLJStG1ECiTWmEGuXZTEsQ,7652
|
445
|
+
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py,sha256=-zbPmzQJal-1vZiQ6vIBBBnlEOB2DTb09koA0Aj4I_I,6396
|
445
446
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py,sha256=jfhszvuD2Fyy6W2KjlLzXBQKFzTqGAaDZeFVr4-ONQw,8776
|
446
447
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py,sha256=_kFG0USYa6yzvLsi82_Vusv_KR8Hi7J1u680pPXECuo,2192
|
447
448
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py,sha256=UKzckLYLdBcFAptyKnVMwpPpfRkmF0SK1Kl0g0eGjQA,9710
|
@@ -526,7 +527,7 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
526
527
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
|
527
528
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
528
529
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
529
|
-
mct_nightly-2.3.0.
|
530
|
-
mct_nightly-2.3.0.
|
531
|
-
mct_nightly-2.3.0.
|
532
|
-
mct_nightly-2.3.0.
|
530
|
+
mct_nightly-2.3.0.20250402.536.dist-info/METADATA,sha256=v7bHr6SXyb9qkbAmhb3xAHDXzinP-56xYnw-3SMtHVc,27098
|
531
|
+
mct_nightly-2.3.0.20250402.536.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
532
|
+
mct_nightly-2.3.0.20250402.536.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
533
|
+
mct_nightly-2.3.0.20250402.536.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.3.0.
|
30
|
+
__version__ = "2.3.0.20250402.000536"
|
@@ -0,0 +1,177 @@
|
|
1
|
+
# Copyright 2025 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import pprint
|
16
|
+
from enum import Enum
|
17
|
+
from typing import Dict, Any, Tuple, Optional
|
18
|
+
|
19
|
+
from pydantic import BaseModel, root_validator
|
20
|
+
|
21
|
+
from mct_quantizers import QuantizationMethod
|
22
|
+
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
23
|
+
from model_compression_toolkit.logger import Logger
|
24
|
+
from model_compression_toolkit.target_platform_capabilities.schema.v1 import (
|
25
|
+
Signedness,
|
26
|
+
AttributeQuantizationConfig,
|
27
|
+
OpQuantizationConfig,
|
28
|
+
QuantizationConfigOptions,
|
29
|
+
TargetPlatformModelComponent,
|
30
|
+
OperatorsSetBase,
|
31
|
+
OperatorsSet,
|
32
|
+
OperatorSetGroup,
|
33
|
+
Fusing)
|
34
|
+
|
35
|
+
|
36
|
+
class OperatorSetNames(str, Enum):
|
37
|
+
CONV = "Conv"
|
38
|
+
DEPTHWISE_CONV = "DepthwiseConv2D"
|
39
|
+
CONV_TRANSPOSE = "ConvTranspose"
|
40
|
+
FULLY_CONNECTED = "FullyConnected"
|
41
|
+
CONCATENATE = "Concatenate"
|
42
|
+
STACK = "Stack"
|
43
|
+
UNSTACK = "Unstack"
|
44
|
+
GATHER = "Gather"
|
45
|
+
EXPAND = "Expend"
|
46
|
+
BATCH_NORM = "BatchNorm"
|
47
|
+
L2NORM = "L2Norm"
|
48
|
+
RELU = "ReLU"
|
49
|
+
RELU6 = "ReLU6"
|
50
|
+
LEAKY_RELU = "LeakyReLU"
|
51
|
+
ELU = "Elu"
|
52
|
+
HARD_TANH = "HardTanh"
|
53
|
+
ADD = "Add"
|
54
|
+
SUB = "Sub"
|
55
|
+
MUL = "Mul"
|
56
|
+
DIV = "Div"
|
57
|
+
MIN = "Min"
|
58
|
+
MAX = "Max"
|
59
|
+
PRELU = "PReLU"
|
60
|
+
ADD_BIAS = "AddBias"
|
61
|
+
SWISH = "Swish"
|
62
|
+
SIGMOID = "Sigmoid"
|
63
|
+
SOFTMAX = "Softmax"
|
64
|
+
LOG_SOFTMAX = "LogSoftmax"
|
65
|
+
TANH = "Tanh"
|
66
|
+
GELU = "Gelu"
|
67
|
+
HARDSIGMOID = "HardSigmoid"
|
68
|
+
HARDSWISH = "HardSwish"
|
69
|
+
FLATTEN = "Flatten"
|
70
|
+
GET_ITEM = "GetItem"
|
71
|
+
RESHAPE = "Reshape"
|
72
|
+
UNSQUEEZE = "Unsqueeze"
|
73
|
+
SQUEEZE = "Squeeze"
|
74
|
+
PERMUTE = "Permute"
|
75
|
+
TRANSPOSE = "Transpose"
|
76
|
+
DROPOUT = "Dropout"
|
77
|
+
SPLIT_CHUNK = "SplitChunk"
|
78
|
+
MAXPOOL = "MaxPool"
|
79
|
+
AVGPOOL = "AvgPool"
|
80
|
+
SIZE = "Size"
|
81
|
+
SHAPE = "Shape"
|
82
|
+
EQUAL = "Equal"
|
83
|
+
ARGMAX = "ArgMax"
|
84
|
+
TOPK = "TopK"
|
85
|
+
FAKE_QUANT = "FakeQuant"
|
86
|
+
COMBINED_NON_MAX_SUPPRESSION = "CombinedNonMaxSuppression"
|
87
|
+
BOX_DECODE = "BoxDecode"
|
88
|
+
ZERO_PADDING2D = "ZeroPadding2D"
|
89
|
+
CAST = "Cast"
|
90
|
+
RESIZE = "Resize"
|
91
|
+
PAD = "Pad"
|
92
|
+
FOLD = "Fold"
|
93
|
+
STRIDED_SLICE = "StridedSlice"
|
94
|
+
SSD_POST_PROCESS = "SSDPostProcess"
|
95
|
+
|
96
|
+
@classmethod
|
97
|
+
def get_values(cls):
|
98
|
+
return [v.value for v in cls]
|
99
|
+
|
100
|
+
|
101
|
+
class TargetPlatformCapabilities(BaseModel):
|
102
|
+
"""
|
103
|
+
Represents the hardware configuration used for quantized model inference.
|
104
|
+
|
105
|
+
Attributes:
|
106
|
+
default_qco (QuantizationConfigOptions): Default quantization configuration options for the model.
|
107
|
+
operator_set (Optional[Tuple[OperatorsSet, ...]]): Tuple of operator sets within the model.
|
108
|
+
fusing_patterns (Optional[Tuple[Fusing, ...]]): Tuple of fusing patterns for the model.
|
109
|
+
tpc_minor_version (Optional[int]): Minor version of the Target Platform Configuration.
|
110
|
+
tpc_patch_version (Optional[int]): Patch version of the Target Platform Configuration.
|
111
|
+
tpc_platform_type (Optional[str]): Type of the platform for the Target Platform Configuration.
|
112
|
+
add_metadata (bool): Flag to determine if metadata should be added.
|
113
|
+
name (str): Name of the Target Platform Model.
|
114
|
+
is_simd_padding (bool): Indicates if SIMD padding is applied.
|
115
|
+
SCHEMA_VERSION (int): Version of the schema for the Target Platform Model.
|
116
|
+
"""
|
117
|
+
default_qco: QuantizationConfigOptions
|
118
|
+
operator_set: Optional[Tuple[OperatorsSet, ...]]
|
119
|
+
fusing_patterns: Optional[Tuple[Fusing, ...]]
|
120
|
+
tpc_minor_version: Optional[int]
|
121
|
+
tpc_patch_version: Optional[int]
|
122
|
+
tpc_platform_type: Optional[str]
|
123
|
+
add_metadata: bool = True
|
124
|
+
name: Optional[str] = "default_tpc"
|
125
|
+
is_simd_padding: bool = False
|
126
|
+
|
127
|
+
SCHEMA_VERSION: int = 2
|
128
|
+
|
129
|
+
class Config:
|
130
|
+
frozen = True
|
131
|
+
|
132
|
+
@root_validator(allow_reuse=True)
|
133
|
+
def validate_after_initialization(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
134
|
+
"""
|
135
|
+
Perform validation after the model has been instantiated.
|
136
|
+
|
137
|
+
Args:
|
138
|
+
values (Dict[str, Any]): The instantiated target platform model.
|
139
|
+
|
140
|
+
Returns:
|
141
|
+
Dict[str, Any]: The validated values.
|
142
|
+
"""
|
143
|
+
# Validate `default_qco`
|
144
|
+
default_qco = values.get('default_qco')
|
145
|
+
if len(default_qco.quantization_configurations) != 1:
|
146
|
+
Logger.critical("Default QuantizationConfigOptions must contain exactly one option.") # pragma: no cover
|
147
|
+
|
148
|
+
# Validate `operator_set` uniqueness
|
149
|
+
operator_set = values.get('operator_set')
|
150
|
+
if operator_set is not None:
|
151
|
+
opsets_names = [
|
152
|
+
op.name.value if isinstance(op.name, OperatorSetNames) else op.name
|
153
|
+
for op in operator_set
|
154
|
+
]
|
155
|
+
if len(set(opsets_names)) != len(opsets_names):
|
156
|
+
Logger.critical("Operator Sets must have unique names.") # pragma: no cover
|
157
|
+
|
158
|
+
return values
|
159
|
+
|
160
|
+
def get_info(self) -> Dict[str, Any]:
|
161
|
+
"""
|
162
|
+
Get a dictionary summarizing the TargetPlatformCapabilities properties.
|
163
|
+
|
164
|
+
Returns:
|
165
|
+
Dict[str, Any]: Summary of the TargetPlatformCapabilities properties.
|
166
|
+
"""
|
167
|
+
return {
|
168
|
+
"Model name": self.name,
|
169
|
+
"Operators sets": [o.get_info() for o in self.operator_set] if self.operator_set else [],
|
170
|
+
"Fusing patterns": [f.get_info() for f in self.fusing_patterns] if self.fusing_patterns else [],
|
171
|
+
}
|
172
|
+
|
173
|
+
def show(self):
|
174
|
+
"""
|
175
|
+
Display the TargetPlatformCapabilities.
|
176
|
+
"""
|
177
|
+
pprint.pprint(self.get_info(), sort_dicts=False)
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py
CHANGED
@@ -93,6 +93,7 @@ class AttachTpcToKeras(AttachTpcToFramework):
|
|
93
93
|
OperatorSetNames.TOPK: [tf.nn.top_k],
|
94
94
|
OperatorSetNames.FAKE_QUANT: [tf.quantization.fake_quant_with_min_max_vars],
|
95
95
|
OperatorSetNames.COMBINED_NON_MAX_SUPPRESSION: [tf.image.combined_non_max_suppression],
|
96
|
+
OperatorSetNames.BOX_DECODE: [], # no such operator in keras
|
96
97
|
OperatorSetNames.ZERO_PADDING2D: [ZeroPadding2D],
|
97
98
|
OperatorSetNames.CAST: [tf.cast],
|
98
99
|
OperatorSetNames.STRIDED_SLICE: [tf.strided_slice],
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py
CHANGED
@@ -97,7 +97,8 @@ class AttachTpcToPytorch(AttachTpcToFramework):
|
|
97
97
|
OperatorSetNames.L2NORM: [LayerFilterParams(torch.nn.functional.normalize,
|
98
98
|
Eq('p', 2) | Eq('p', None))],
|
99
99
|
OperatorSetNames.SSD_POST_PROCESS: [], # no such operator in pytorch
|
100
|
-
OperatorSetNames.COMBINED_NON_MAX_SUPPRESSION: [] # no such operator in pytorch
|
100
|
+
OperatorSetNames.COMBINED_NON_MAX_SUPPRESSION: [], # no such operator in pytorch
|
101
|
+
OperatorSetNames.BOX_DECODE: [] # no such operator in pytorch
|
101
102
|
}
|
102
103
|
|
103
104
|
pytorch_linear_attr_mapping = {KERNEL_ATTR: DefaultDict(default_value=PYTORCH_KERNEL),
|
File without changes
|
File without changes
|
{mct_nightly-2.3.0.20250401.618.dist-info → mct_nightly-2.3.0.20250402.536.dist-info}/top_level.txt
RENAMED
File without changes
|