mct-nightly 2.3.0.20250310.500__py3-none-any.whl → 2.3.0.20250312.514__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250310.500
3
+ Version: 2.3.0.20250312.514
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -20,7 +20,7 @@ Requires-Dist: PuLP
20
20
  Requires-Dist: matplotlib<3.10.0
21
21
  Requires-Dist: scipy
22
22
  Requires-Dist: protobuf
23
- Requires-Dist: mct-quantizers==1.5.2
23
+ Requires-Dist: mct-quantizers-nightly
24
24
  Requires-Dist: pydantic<2.0
25
25
  Dynamic: classifier
26
26
  Dynamic: description
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=IvTOp-U0QerJ9UCdyeAzLvpX3qRiOQGbOeGL7ps8zGg,1557
1
+ model_compression_toolkit/__init__.py,sha256=swzMuHhTtHQlF7YhR0U_1T9aqkgc4JW2Uu1kCEteVS4,1557
2
2
  model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
@@ -347,7 +347,7 @@ model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer
347
347
  model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
348
348
  model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py,sha256=vQUGbCi8_pGoN8DwQ0IblSeN6L9t6Cr0reZNuCbBpkM,3469
349
349
  model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
350
- model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py,sha256=0sx6PLcnJ42LHKn79Qx1FOH615YBqM9OJMF6S1W6plE,6255
350
+ model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py,sha256=dpN2Hyb56Wt4INEtBJAOxZeFdhIwdx__WFTmOVkxMLc,6470
351
351
  model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py,sha256=Pl8a8MSZMzNbm5vngujFjCt_iSMbSmKjlcL1DvN9nTM,9292
352
352
  model_compression_toolkit/gptq/__init__.py,sha256=pEgkJvmf05KSw70iLDTz_6LI_2Oi5L8sTN0JsEUpnpk,1445
353
353
  model_compression_toolkit/gptq/runner.py,sha256=La12JTYjWyJW0YW4Al4TP1_Xi4JWBCEKw6FR_JQsxe0,5982
@@ -524,8 +524,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
524
524
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
525
525
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
526
526
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
527
- mct_nightly-2.3.0.20250310.500.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
528
- mct_nightly-2.3.0.20250310.500.dist-info/METADATA,sha256=sONRBJhRO4oeP6vCk6tpSIEekAc8Y8EH-6HfO-a9ZG0,27079
529
- mct_nightly-2.3.0.20250310.500.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
530
- mct_nightly-2.3.0.20250310.500.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
531
- mct_nightly-2.3.0.20250310.500.dist-info/RECORD,,
527
+ mct_nightly-2.3.0.20250312.514.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
528
+ mct_nightly-2.3.0.20250312.514.dist-info/METADATA,sha256=NdK1AjbyFYWVwsFV1HY0TQQPNdRJ6_iEj85WPvMG0aE,27080
529
+ mct_nightly-2.3.0.20250312.514.dist-info/WHEEL,sha256=52BFRY2Up02UkjOa29eZOS2VxUrpPORXg1pkohGGUS8,91
530
+ mct_nightly-2.3.0.20250312.514.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
531
+ mct_nightly-2.3.0.20250312.514.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.3.0.20250310.000500"
30
+ __version__ = "2.3.0.20250312.000514"
@@ -45,6 +45,10 @@ if FOUND_TORCH:
45
45
  """
46
46
  weight_quantizers, _ = fw_impl.get_inferable_quantizers(node)
47
47
  if len(weight_quantizers) > 0:
48
+ # Set reuse for weight quantizers if node is reused
49
+ for _, quantizer in weight_quantizers.items():
50
+ if node.reuse_group:
51
+ quantizer.enable_reuse_quantizer()
48
52
  # for positional weights we need to extract the weight's value.
49
53
  weights_values = {attr: fw_impl.to_tensor(node.get_weights_by_keys(attr))
50
54
  for attr in weight_quantizers if isinstance(attr, int)}