mct-nightly 2.3.0.20250305.525__py3-none-any.whl → 2.3.0.20250307.513__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.3.0.20250305.525.dist-info → mct_nightly-2.3.0.20250307.513.dist-info}/METADATA +1 -1
- {mct_nightly-2.3.0.20250305.525.dist-info → mct_nightly-2.3.0.20250307.513.dist-info}/RECORD +8 -8
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +1 -1
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +1 -1
- {mct_nightly-2.3.0.20250305.525.dist-info → mct_nightly-2.3.0.20250307.513.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.3.0.20250305.525.dist-info → mct_nightly-2.3.0.20250307.513.dist-info}/WHEEL +0 -0
- {mct_nightly-2.3.0.20250305.525.dist-info → mct_nightly-2.3.0.20250307.513.dist-info}/top_level.txt +0 -0
{mct_nightly-2.3.0.20250305.525.dist-info → mct_nightly-2.3.0.20250307.513.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.3.0.
|
3
|
+
Version: 2.3.0.20250307.513
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.3.0.20250305.525.dist-info → mct_nightly-2.3.0.20250307.513.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=AkhMnpMke1yM_hm8TD1ra1MDX1FLeNQV-FGJB0sMORY,1557
|
2
2
|
model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
|
@@ -42,7 +42,7 @@ model_compression_toolkit/core/common/graph/graph_searches.py,sha256=2oKuW6L8hP-
|
|
42
42
|
model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py,sha256=3el-A7j1oyoo1_9zq3faQp7IeRsFXFCvnrb3zZFXpU0,9803
|
43
43
|
model_compression_toolkit/core/common/graph/memory_graph/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
44
44
|
model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py,sha256=X6FK3C3y8ixFRPjC_wm3ClloCX8_06SOdA1TRi7o_LA,3800
|
45
|
-
model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py,sha256=
|
45
|
+
model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py,sha256=oyz260JXDbvL8aI-DVtUvLHtLRWC2Yu4SBYlGL68c2Y,3498
|
46
46
|
model_compression_toolkit/core/common/graph/memory_graph/cut.py,sha256=7Dfq4TVJIrnencHLJqjhxYKhY7ooUo_ml33WH2IIAgc,2576
|
47
47
|
model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py,sha256=E8xKMUxtEF0GjztUk-3CmMtivPPBcADnZTUaSN24o6A,17816
|
48
48
|
model_compression_toolkit/core/common/graph/memory_graph/memory_element.py,sha256=ISD2BvJWj5mB91jrFjG8VQb0oOoLBoita_thCZWzCPI,4238
|
@@ -255,7 +255,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_
|
|
255
255
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py,sha256=hAZXzrEinHa-dJHLj39Hy_9Q-13QyO95rtYVSLrhvT8,4915
|
256
256
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py,sha256=DcJEIkGvBdIMOelNIwaJUZ5UsAHiGnDJPR20I464vWo,2929
|
257
257
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py,sha256=XFtU9yuBmoZlX0f0mS6otMPWMk-RcWs94XdvvTNhW8Y,3303
|
258
|
-
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py,sha256=
|
258
|
+
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py,sha256=WG7MyYTP5JhMZHYxj4PB-7TTuvUDjFQScG4_Ce1mQDY,12476
|
259
259
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py,sha256=3WCLvPyx7tVkM0rwYhYq-gntCzW9R_DcImR1ucKlPac,10772
|
260
260
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py,sha256=05lV4pIL3hJkZl4JQPV4wk_EFD0eYLG5b8cdzvZk4P8,1588
|
261
261
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py,sha256=EC9Dvp-_UlpDWnipnf8ds65wh_Y-T8pXAFIwRScWpiY,2044
|
@@ -524,8 +524,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
524
524
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
|
525
525
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
526
526
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
527
|
-
mct_nightly-2.3.0.
|
528
|
-
mct_nightly-2.3.0.
|
529
|
-
mct_nightly-2.3.0.
|
530
|
-
mct_nightly-2.3.0.
|
531
|
-
mct_nightly-2.3.0.
|
527
|
+
mct_nightly-2.3.0.20250307.513.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
528
|
+
mct_nightly-2.3.0.20250307.513.dist-info/METADATA,sha256=wTBDxoAPOHqmDfBcvWuVcO8JrBLPwUvm266LX634a0Y,27079
|
529
|
+
mct_nightly-2.3.0.20250307.513.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
530
|
+
mct_nightly-2.3.0.20250307.513.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
531
|
+
mct_nightly-2.3.0.20250307.513.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.3.0.
|
30
|
+
__version__ = "2.3.0.20250307.000513"
|
@@ -27,7 +27,7 @@ SchedulerInfo = namedtuple('SchedulerInfo', [OPERATORS_SCHEDULING, MAX_CUT, CUTS
|
|
27
27
|
|
28
28
|
def compute_graph_max_cut(memory_graph: MemoryGraph,
|
29
29
|
n_iter: int = 50,
|
30
|
-
astar_n_iter: int =
|
30
|
+
astar_n_iter: int = 1000,
|
31
31
|
eps: float = 1e-2) -> Tuple[List[BaseNode], float, List[Cut]]:
|
32
32
|
"""
|
33
33
|
A wrapper function to compute max cut and schedule for a given model.
|
@@ -103,7 +103,7 @@ class ScaledDotProductDecomposition(BaseSubstitution):
|
|
103
103
|
matmul_name = f'{attention_node_name}_matmul1'
|
104
104
|
return FunctionalNode(name=matmul_name,
|
105
105
|
framework_attr={},
|
106
|
-
input_shape=(tuple(q_node.output_shape[0]), tuple(transposed_k_node.output_shape)),
|
106
|
+
input_shape=(tuple(q_node.output_shape[0]), tuple(transposed_k_node.output_shape[0])),
|
107
107
|
output_shape=tuple(matmul1_output_shape),
|
108
108
|
weights={},
|
109
109
|
layer_class=torch.matmul,
|
{mct_nightly-2.3.0.20250305.525.dist-info → mct_nightly-2.3.0.20250307.513.dist-info}/LICENSE.md
RENAMED
File without changes
|
File without changes
|
{mct_nightly-2.3.0.20250305.525.dist-info → mct_nightly-2.3.0.20250307.513.dist-info}/top_level.txt
RENAMED
File without changes
|