mct-nightly 2.3.0.20250304.517__py3-none-any.whl → 2.3.0.20250306.517__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250304.517
3
+ Version: 2.3.0.20250306.517
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=ovorAudQVUZkkSP9sCAZa5w2M5hCKGvczDcgMWGS8iQ,1557
1
+ model_compression_toolkit/__init__.py,sha256=KAly1dabQ2mmOhCqkNoDMZrsXtV-JE-zjtsSqNdp6bg,1557
2
2
  model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
@@ -42,7 +42,7 @@ model_compression_toolkit/core/common/graph/graph_searches.py,sha256=2oKuW6L8hP-
42
42
  model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py,sha256=3el-A7j1oyoo1_9zq3faQp7IeRsFXFCvnrb3zZFXpU0,9803
43
43
  model_compression_toolkit/core/common/graph/memory_graph/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
44
44
  model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py,sha256=X6FK3C3y8ixFRPjC_wm3ClloCX8_06SOdA1TRi7o_LA,3800
45
- model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py,sha256=sUGp9GnKBI5NL7Y6d9pCyAL6Nv_3Htf2wInUtCtNMpU,3497
45
+ model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py,sha256=oyz260JXDbvL8aI-DVtUvLHtLRWC2Yu4SBYlGL68c2Y,3498
46
46
  model_compression_toolkit/core/common/graph/memory_graph/cut.py,sha256=7Dfq4TVJIrnencHLJqjhxYKhY7ooUo_ml33WH2IIAgc,2576
47
47
  model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py,sha256=E8xKMUxtEF0GjztUk-3CmMtivPPBcADnZTUaSN24o6A,17816
48
48
  model_compression_toolkit/core/common/graph/memory_graph/memory_element.py,sha256=ISD2BvJWj5mB91jrFjG8VQb0oOoLBoita_thCZWzCPI,4238
@@ -255,7 +255,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_
255
255
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py,sha256=hAZXzrEinHa-dJHLj39Hy_9Q-13QyO95rtYVSLrhvT8,4915
256
256
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py,sha256=DcJEIkGvBdIMOelNIwaJUZ5UsAHiGnDJPR20I464vWo,2929
257
257
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py,sha256=XFtU9yuBmoZlX0f0mS6otMPWMk-RcWs94XdvvTNhW8Y,3303
258
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py,sha256=SBtIuxb1Q2oUMJKSrAyN2wuaY4k1tsKt7qql0dP_PE0,12473
258
+ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py,sha256=WG7MyYTP5JhMZHYxj4PB-7TTuvUDjFQScG4_Ce1mQDY,12476
259
259
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py,sha256=3WCLvPyx7tVkM0rwYhYq-gntCzW9R_DcImR1ucKlPac,10772
260
260
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py,sha256=05lV4pIL3hJkZl4JQPV4wk_EFD0eYLG5b8cdzvZk4P8,1588
261
261
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py,sha256=EC9Dvp-_UlpDWnipnf8ds65wh_Y-T8pXAFIwRScWpiY,2044
@@ -439,7 +439,7 @@ model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=4CGpW
439
439
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py,sha256=XjNws3zoiJkeH4ixKqrLA5xBvpv5rq31qX7wYQjNpZM,1447
440
440
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py,sha256=HJ8uc3PFfyxg-WpVXPBg4mGaox8Z9bRqtQNbRfIyAk4,3745
441
441
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py,sha256=mxc3DBbUi-HDFgSx8Nmnyxr8SIdbx8lmtcRMsQl1BLE,7578
442
- model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py,sha256=swbfYmAbvQ7yDfyPhDWZxeN2P18WohI8uzz8zR1z0cg,6301
442
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py,sha256=WPCqs_aFGE28XJf7KKB-SlrYoUNOcD9epgoaqQMCJMw,6320
443
443
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py,sha256=jfhszvuD2Fyy6W2KjlLzXBQKFzTqGAaDZeFVr4-ONQw,8776
444
444
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py,sha256=_kFG0USYa6yzvLsi82_Vusv_KR8Hi7J1u680pPXECuo,2192
445
445
  model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py,sha256=UKzckLYLdBcFAptyKnVMwpPpfRkmF0SK1Kl0g0eGjQA,9710
@@ -459,7 +459,7 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1
459
459
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
460
460
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=NGnmaFTeLINIdAZ1svx-_OiF6vIs8upH-tz3q9jWBQ4,1554
461
461
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
462
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py,sha256=2UXcjIBKL0sVdJ2zN_L6JyX9P37ErD95dDN0TUzbFz0,12781
462
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py,sha256=sd1oN7mYH6fHqJwU2QZf6WU2NJ8EKzQ9-o4-JGU6Plc,12958
463
463
  model_compression_toolkit/trainable_infrastructure/__init__.py,sha256=uewpvlPkH9mBFt8IxoAgIfz6iEcvWbOImm_fb6_BxD8,1543
464
464
  model_compression_toolkit/trainable_infrastructure/common/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
465
465
  model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py,sha256=qm2_wa61nga08Jdcl3RkgTsJ0zyHNjZ_A6I2--oVOig,2455
@@ -524,8 +524,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
524
524
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
525
525
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
526
526
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
527
- mct_nightly-2.3.0.20250304.517.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
528
- mct_nightly-2.3.0.20250304.517.dist-info/METADATA,sha256=ohIw0TcK_CUbaSVCUGc9YVprMJap8YJyC9kKYVoFxfA,27079
529
- mct_nightly-2.3.0.20250304.517.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
530
- mct_nightly-2.3.0.20250304.517.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
531
- mct_nightly-2.3.0.20250304.517.dist-info/RECORD,,
527
+ mct_nightly-2.3.0.20250306.517.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
528
+ mct_nightly-2.3.0.20250306.517.dist-info/METADATA,sha256=oluoSGV3e3blg9xNQ0KiWtwivNTNNTSDl6zzjLJSSFI,27079
529
+ mct_nightly-2.3.0.20250306.517.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
530
+ mct_nightly-2.3.0.20250306.517.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
531
+ mct_nightly-2.3.0.20250306.517.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.3.0.20250304.000517"
30
+ __version__ = "2.3.0.20250306.000517"
@@ -27,7 +27,7 @@ SchedulerInfo = namedtuple('SchedulerInfo', [OPERATORS_SCHEDULING, MAX_CUT, CUTS
27
27
 
28
28
  def compute_graph_max_cut(memory_graph: MemoryGraph,
29
29
  n_iter: int = 50,
30
- astar_n_iter: int = 500,
30
+ astar_n_iter: int = 1000,
31
31
  eps: float = 1e-2) -> Tuple[List[BaseNode], float, List[Cut]]:
32
32
  """
33
33
  A wrapper function to compute max cut and schedule for a given model.
@@ -103,7 +103,7 @@ class ScaledDotProductDecomposition(BaseSubstitution):
103
103
  matmul_name = f'{attention_node_name}_matmul1'
104
104
  return FunctionalNode(name=matmul_name,
105
105
  framework_attr={},
106
- input_shape=(tuple(q_node.output_shape[0]), tuple(transposed_k_node.output_shape)),
106
+ input_shape=(tuple(q_node.output_shape[0]), tuple(transposed_k_node.output_shape[0])),
107
107
  output_shape=tuple(matmul1_output_shape),
108
108
  weights={},
109
109
  layer_class=torch.matmul,
@@ -70,7 +70,7 @@ class AttachTpcToPytorch(AttachTpcToFramework):
70
70
  OperatorSetNames.HARDSWISH: [Hardswish, hardswish],
71
71
  OperatorSetNames.FLATTEN: [Flatten, flatten],
72
72
  OperatorSetNames.GET_ITEM: [operator.getitem],
73
- OperatorSetNames.RESHAPE: [reshape],
73
+ OperatorSetNames.RESHAPE: [reshape, torch.Tensor.view],
74
74
  OperatorSetNames.UNSQUEEZE: [unsqueeze],
75
75
  OperatorSetNames.SQUEEZE: [squeeze],
76
76
  OperatorSetNames.PERMUTE: [permute],
@@ -137,6 +137,7 @@ def generate_tpc(default_config: OpQuantizationConfig,
137
137
  # If the QuantizationConfigOptions contains only one configuration,
138
138
  # this configuration will be used for the operation quantization:
139
139
  default_configuration_options = schema.QuantizationConfigOptions(quantization_configurations=tuple([default_config]))
140
+ base_configuration_options = schema.QuantizationConfigOptions(quantization_configurations=tuple([base_config]), base_config=base_config)
140
141
 
141
142
  # In TFLite, the quantized operator specifications constraint operators quantization
142
143
  # differently. For more details:
@@ -179,13 +180,13 @@ def generate_tpc(default_config: OpQuantizationConfig,
179
180
  qc_options=default_configuration_options.clone_and_edit(
180
181
  fixed_zero_point=-128, fixed_scale=1 / 256))
181
182
  fc = schema.OperatorsSet(name=schema.OperatorSetNames.FULLY_CONNECTED,
182
- qc_options=default_configuration_options.clone_and_edit_weight_attribute(
183
+ qc_options=base_configuration_options.clone_and_edit_weight_attribute(
183
184
  weights_per_channel_threshold=False))
184
185
  squeeze = schema.OperatorsSet(name=schema.OperatorSetNames.SQUEEZE,
185
186
  qc_options=default_configuration_options.clone_and_edit(
186
187
  quantization_preserving=True))
187
188
 
188
- conv2d = schema.OperatorsSet(name=schema.OperatorSetNames.CONV)
189
+ conv2d = schema.OperatorsSet(name=schema.OperatorSetNames.CONV, qc_options=base_configuration_options)
189
190
  relu = schema.OperatorsSet(name=schema.OperatorSetNames.RELU)
190
191
  relu6 = schema.OperatorsSet(name=schema.OperatorSetNames.RELU6)
191
192
  elu = schema.OperatorsSet(name=schema.OperatorSetNames.ELU)