mct-nightly 2.3.0.20250223.538__py3-none-any.whl → 2.3.0.20250224.520__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250223.538
3
+ Version: 2.3.0.20250224.520
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -234,4 +234,4 @@ MCT is licensed under Apache License Version 2.0. By contributing to the project
234
234
 
235
235
  [4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
236
236
 
237
- [5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://arxiv.org/abs/2410.22110)
237
+ [5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://openaccess.thecvf.com/content/WACV2025/papers/Dikstein_Data_Generation_for_Hardware-Friendly_Post-Training_Quantization_WACV_2025_paper.pdf)
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=QXBYi-hs6GJYdP4_7rgSG3_tzanglYvFI_Y1YWf3xmM,1557
1
+ model_compression_toolkit/__init__.py,sha256=XPlwfy0T0gMTCZ01zRDr3cH7rpemqNJ-lzwMsB0f2Ls,1557
2
2
  model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
@@ -76,7 +76,7 @@ model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools
76
76
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py,sha256=DyiE84ECgwtaCATWcisv-7ndmBUbj_TaddZ7GeIjlrU,35307
77
77
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py,sha256=J7gqUGs4ITo4ufl84A5vACxm670LG6RhQyXkejfpbn8,8834
78
78
  model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
79
- model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py,sha256=uhC0az5OVSfeYexcasoy0cT8ZOonFKIedk_1U-ZPLhA,17171
79
+ model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py,sha256=9Hh85pr0VL65umhf9mPnrrssJXwJPAsIkBwCZnfzjHY,17575
80
80
  model_compression_toolkit/core/common/network_editors/__init__.py,sha256=vZmu55bYqiaOQs3AjfwWDXHmuKZcLHt-wm7uR5fPEqg,1307
81
81
  model_compression_toolkit/core/common/network_editors/actions.py,sha256=nid0_j-Cn10xvmztT8yCKW_6uA7JEnom9SW9syx7wc0,19594
82
82
  model_compression_toolkit/core/common/network_editors/edit_network.py,sha256=dfgawi-nB0ocAJ0xcGn9E-Zv203oUnQLuMiXpX8vTgA,1748
@@ -523,8 +523,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
523
523
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
524
524
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
525
525
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
526
- mct_nightly-2.3.0.20250223.538.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
527
- mct_nightly-2.3.0.20250223.538.dist-info/METADATA,sha256=SZmxR9gYUByXf8FYPlnlOq-uIlixpBAY-ILR3L_bhZE,26933
528
- mct_nightly-2.3.0.20250223.538.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
529
- mct_nightly-2.3.0.20250223.538.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
530
- mct_nightly-2.3.0.20250223.538.dist-info/RECORD,,
526
+ mct_nightly-2.3.0.20250224.520.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
527
+ mct_nightly-2.3.0.20250224.520.dist-info/METADATA,sha256=OVHQCbVXUa7oBYpzxjY4So1l0FRv8CfzS9mMZafBeUg,27048
528
+ mct_nightly-2.3.0.20250224.520.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
529
+ mct_nightly-2.3.0.20250224.520.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
530
+ mct_nightly-2.3.0.20250224.520.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.3.0.20250223.000538"
30
+ __version__ = "2.3.0.20250224.000520"
@@ -218,7 +218,12 @@ def _add_ru_constraints(search_manager: MixedPrecisionSearchManager,
218
218
  ru_vec = np.concatenate([ru_vec, non_conf_ru_vec])
219
219
  ru_indicated_vectors[target] = ru_vec
220
220
 
221
- # add constraints only for the restricted targets in target resource utilization.
221
+ # Add constraints only for the restricted targets in target resource utilization.
222
+ # Adding activation constraints modifies the lp term in ru_indicated_vectors, so if both activation and total
223
+ # are restricted we first add the constraints for total.
224
+ if RUTarget.TOTAL in constraints_targets and RUTarget.ACTIVATION in constraints_targets:
225
+ constraints_targets.remove(RUTarget.ACTIVATION)
226
+ constraints_targets = list(constraints_targets) + [RUTarget.ACTIVATION]
222
227
  for target in constraints_targets:
223
228
  target_resource_utilization_value = target_resource_utilization.get_resource_utilization_dict()[target]
224
229
  aggr_ru = _aggregate_for_lp(ru_indicated_vectors, target)