mct-nightly 2.3.0.20250222.459__py3-none-any.whl → 2.3.0.20250224.520__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.3.0.20250222.459.dist-info → mct_nightly-2.3.0.20250224.520.dist-info}/METADATA +2 -2
- {mct_nightly-2.3.0.20250222.459.dist-info → mct_nightly-2.3.0.20250224.520.dist-info}/RECORD +7 -7
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +6 -1
- {mct_nightly-2.3.0.20250222.459.dist-info → mct_nightly-2.3.0.20250224.520.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.3.0.20250222.459.dist-info → mct_nightly-2.3.0.20250224.520.dist-info}/WHEEL +0 -0
- {mct_nightly-2.3.0.20250222.459.dist-info → mct_nightly-2.3.0.20250224.520.dist-info}/top_level.txt +0 -0
{mct_nightly-2.3.0.20250222.459.dist-info → mct_nightly-2.3.0.20250224.520.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.3.0.
|
3
|
+
Version: 2.3.0.20250224.520
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
@@ -234,4 +234,4 @@ MCT is licensed under Apache License Version 2.0. By contributing to the project
|
|
234
234
|
|
235
235
|
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
|
236
236
|
|
237
|
-
[5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://
|
237
|
+
[5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://openaccess.thecvf.com/content/WACV2025/papers/Dikstein_Data_Generation_for_Hardware-Friendly_Post-Training_Quantization_WACV_2025_paper.pdf)
|
{mct_nightly-2.3.0.20250222.459.dist-info → mct_nightly-2.3.0.20250224.520.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=XPlwfy0T0gMTCZ01zRDr3cH7rpemqNJ-lzwMsB0f2Ls,1557
|
2
2
|
model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
|
@@ -76,7 +76,7 @@ model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools
|
|
76
76
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py,sha256=DyiE84ECgwtaCATWcisv-7ndmBUbj_TaddZ7GeIjlrU,35307
|
77
77
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py,sha256=J7gqUGs4ITo4ufl84A5vACxm670LG6RhQyXkejfpbn8,8834
|
78
78
|
model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
|
79
|
-
model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py,sha256=
|
79
|
+
model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py,sha256=9Hh85pr0VL65umhf9mPnrrssJXwJPAsIkBwCZnfzjHY,17575
|
80
80
|
model_compression_toolkit/core/common/network_editors/__init__.py,sha256=vZmu55bYqiaOQs3AjfwWDXHmuKZcLHt-wm7uR5fPEqg,1307
|
81
81
|
model_compression_toolkit/core/common/network_editors/actions.py,sha256=nid0_j-Cn10xvmztT8yCKW_6uA7JEnom9SW9syx7wc0,19594
|
82
82
|
model_compression_toolkit/core/common/network_editors/edit_network.py,sha256=dfgawi-nB0ocAJ0xcGn9E-Zv203oUnQLuMiXpX8vTgA,1748
|
@@ -523,8 +523,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
523
523
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
|
524
524
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
525
525
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
526
|
-
mct_nightly-2.3.0.
|
527
|
-
mct_nightly-2.3.0.
|
528
|
-
mct_nightly-2.3.0.
|
529
|
-
mct_nightly-2.3.0.
|
530
|
-
mct_nightly-2.3.0.
|
526
|
+
mct_nightly-2.3.0.20250224.520.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
527
|
+
mct_nightly-2.3.0.20250224.520.dist-info/METADATA,sha256=OVHQCbVXUa7oBYpzxjY4So1l0FRv8CfzS9mMZafBeUg,27048
|
528
|
+
mct_nightly-2.3.0.20250224.520.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
529
|
+
mct_nightly-2.3.0.20250224.520.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
530
|
+
mct_nightly-2.3.0.20250224.520.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.3.0.
|
30
|
+
__version__ = "2.3.0.20250224.000520"
|
@@ -218,7 +218,12 @@ def _add_ru_constraints(search_manager: MixedPrecisionSearchManager,
|
|
218
218
|
ru_vec = np.concatenate([ru_vec, non_conf_ru_vec])
|
219
219
|
ru_indicated_vectors[target] = ru_vec
|
220
220
|
|
221
|
-
#
|
221
|
+
# Add constraints only for the restricted targets in target resource utilization.
|
222
|
+
# Adding activation constraints modifies the lp term in ru_indicated_vectors, so if both activation and total
|
223
|
+
# are restricted we first add the constraints for total.
|
224
|
+
if RUTarget.TOTAL in constraints_targets and RUTarget.ACTIVATION in constraints_targets:
|
225
|
+
constraints_targets.remove(RUTarget.ACTIVATION)
|
226
|
+
constraints_targets = list(constraints_targets) + [RUTarget.ACTIVATION]
|
222
227
|
for target in constraints_targets:
|
223
228
|
target_resource_utilization_value = target_resource_utilization.get_resource_utilization_dict()[target]
|
224
229
|
aggr_ru = _aggregate_for_lp(ru_indicated_vectors, target)
|
{mct_nightly-2.3.0.20250222.459.dist-info → mct_nightly-2.3.0.20250224.520.dist-info}/LICENSE.md
RENAMED
File without changes
|
File without changes
|
{mct_nightly-2.3.0.20250222.459.dist-info → mct_nightly-2.3.0.20250224.520.dist-info}/top_level.txt
RENAMED
File without changes
|