mct-nightly 2.3.0.20250218.513__py3-none-any.whl → 2.3.0.20250219.507__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.3.0.20250218.513.dist-info → mct_nightly-2.3.0.20250219.507.dist-info}/METADATA +1 -1
- {mct_nightly-2.3.0.20250218.513.dist-info → mct_nightly-2.3.0.20250219.507.dist-info}/RECORD +8 -8
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/core/common/graph/base_graph.py +1 -1
- model_compression_toolkit/core/pytorch/reader/reader.py +3 -0
- {mct_nightly-2.3.0.20250218.513.dist-info → mct_nightly-2.3.0.20250219.507.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.3.0.20250218.513.dist-info → mct_nightly-2.3.0.20250219.507.dist-info}/WHEEL +0 -0
- {mct_nightly-2.3.0.20250218.513.dist-info → mct_nightly-2.3.0.20250219.507.dist-info}/top_level.txt +0 -0
{mct_nightly-2.3.0.20250218.513.dist-info → mct_nightly-2.3.0.20250219.507.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.3.0.
|
3
|
+
Version: 2.3.0.20250219.507
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.3.0.20250218.513.dist-info → mct_nightly-2.3.0.20250219.507.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=6qHWokQ4krL43UsjNfvQ5uY-9B0iFBWOC0aw4_zvQYI,1557
|
2
2
|
model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
|
@@ -32,7 +32,7 @@ model_compression_toolkit/core/common/fusion/__init__.py,sha256=Rf1RcYmelmdZmBV5
|
|
32
32
|
model_compression_toolkit/core/common/fusion/graph_fuser.py,sha256=b41_4rL_Adiza4vpWlmmqgvkpUmWVdfdx0nEIB0p2n8,6195
|
33
33
|
model_compression_toolkit/core/common/fusion/layer_fusing.py,sha256=-2fnjyC9q2RPw9st6RxROW-gdtT2mSRz0QZ_Gz1KDz4,5579
|
34
34
|
model_compression_toolkit/core/common/graph/__init__.py,sha256=Xr-Lt_qXMdrCnnOaUS_OJP_3iTTGfPCLf8_vSrQgCs0,773
|
35
|
-
model_compression_toolkit/core/common/graph/base_graph.py,sha256=
|
35
|
+
model_compression_toolkit/core/common/graph/base_graph.py,sha256=0zsiEldkV_wjDoTjaGtL8DOMGEv2yQqhajwEAnFgqR8,37819
|
36
36
|
model_compression_toolkit/core/common/graph/base_node.py,sha256=_SJBlDIwq5Kt2HLYWIT6POJFnUfrtcOFlOLxTbadJ1w,33058
|
37
37
|
model_compression_toolkit/core/common/graph/edge.py,sha256=buoSEUZwilWBK3WeBKpJ-GeDaUA1SDdOHxDpxU_bGpk,3784
|
38
38
|
model_compression_toolkit/core/common/graph/functional_node.py,sha256=GH5wStmw8SoAj5IdT_-ItN1Meo_P5NUTt_5bgJC4fak,3935
|
@@ -275,7 +275,7 @@ model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py,sha256=uyeBtN
|
|
275
275
|
model_compression_toolkit/core/pytorch/reader/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
276
276
|
model_compression_toolkit/core/pytorch/reader/graph_builders.py,sha256=RBNhPuz02kstVVIDibHUES_Skn9feg3gOGbQylM8h-A,19547
|
277
277
|
model_compression_toolkit/core/pytorch/reader/node_holders.py,sha256=7XNc7-l1MZPJGcOESvtAwfIMxrU6kvt3YjF5B7qOqK4,1048
|
278
|
-
model_compression_toolkit/core/pytorch/reader/reader.py,sha256=
|
278
|
+
model_compression_toolkit/core/pytorch/reader/reader.py,sha256=Me6nqJpmQBg13dXYiUsmfYr148BYySBZqxHRDba5Tuk,6228
|
279
279
|
model_compression_toolkit/core/pytorch/statistics_correction/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
|
280
280
|
model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py,sha256=VgU24J3jf7QComHH7jonOXSkg6mO4TOch3uFkOthZvM,3261
|
281
281
|
model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py,sha256=N-9QaEaQYUsIoya9Lc0ZDoMZ0fkiT2gFpOd4zXHKP34,3096
|
@@ -523,8 +523,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
523
523
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
|
524
524
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
525
525
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
526
|
-
mct_nightly-2.3.0.
|
527
|
-
mct_nightly-2.3.0.
|
528
|
-
mct_nightly-2.3.0.
|
529
|
-
mct_nightly-2.3.0.
|
530
|
-
mct_nightly-2.3.0.
|
526
|
+
mct_nightly-2.3.0.20250219.507.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
527
|
+
mct_nightly-2.3.0.20250219.507.dist-info/METADATA,sha256=ZVA50VereM7vOv8QrrhajAMueKGK81XgfOoIm295pnw,26933
|
528
|
+
mct_nightly-2.3.0.20250219.507.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
529
|
+
mct_nightly-2.3.0.20250219.507.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
530
|
+
mct_nightly-2.3.0.20250219.507.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.3.0.
|
30
|
+
__version__ = "2.3.0.20250219.000507"
|
@@ -449,7 +449,7 @@ class Graph(nx.MultiDiGraph, GraphSearches):
|
|
449
449
|
if node_to_remove in self.get_inputs(): # If node is in the graph's inputs, the inputs should be updated
|
450
450
|
if new_graph_inputs is None:
|
451
451
|
Logger.critical(
|
452
|
-
f'{node_to_remove.name}
|
452
|
+
f'{node_to_remove.name} is among the graph inputs; however, it cannot be removed without providing a new input.') # pragma: no cover
|
453
453
|
self.set_inputs(new_graph_inputs)
|
454
454
|
|
455
455
|
# Make sure there are no connected edges left to the node before removing it.
|
@@ -152,5 +152,8 @@ def model_reader(model: torch.nn.Module,
|
|
152
152
|
logging.info("Start Model Reading...")
|
153
153
|
fx_model = fx_graph_module_generation(model, representative_data_gen, to_tensor)
|
154
154
|
graph = build_graph(fx_model, to_numpy)
|
155
|
+
disconnected_inputs = [n.name for n in graph.get_inputs() if not graph.out_edges(n)]
|
156
|
+
if disconnected_inputs:
|
157
|
+
raise ValueError(f'The network contains disconnected input(s): {disconnected_inputs}.')
|
155
158
|
graph = remove_broken_nodes_from_graph(graph)
|
156
159
|
return graph
|
{mct_nightly-2.3.0.20250218.513.dist-info → mct_nightly-2.3.0.20250219.507.dist-info}/LICENSE.md
RENAMED
File without changes
|
File without changes
|
{mct_nightly-2.3.0.20250218.513.dist-info → mct_nightly-2.3.0.20250219.507.dist-info}/top_level.txt
RENAMED
File without changes
|