mct-nightly 2.3.0.20250217.528__py3-none-any.whl → 2.3.0.20250218.513__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.3.0.20250217.528.dist-info → mct_nightly-2.3.0.20250218.513.dist-info}/METADATA +3 -3
- {mct_nightly-2.3.0.20250217.528.dist-info → mct_nightly-2.3.0.20250218.513.dist-info}/RECORD +6 -6
- model_compression_toolkit/__init__.py +1 -1
- {mct_nightly-2.3.0.20250217.528.dist-info → mct_nightly-2.3.0.20250218.513.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.3.0.20250217.528.dist-info → mct_nightly-2.3.0.20250218.513.dist-info}/WHEEL +0 -0
- {mct_nightly-2.3.0.20250217.528.dist-info → mct_nightly-2.3.0.20250218.513.dist-info}/top_level.txt +0 -0
{mct_nightly-2.3.0.20250217.528.dist-info → mct_nightly-2.3.0.20250218.513.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.3.0.
|
3
|
+
Version: 2.3.0.20250218.513
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
@@ -67,7 +67,7 @@ pip install model-compression-toolkit
|
|
67
67
|
```
|
68
68
|
For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
|
69
69
|
|
70
|
-
**Important note**: In order to use MCT, you’ll need to provide a floating point
|
70
|
+
**Important note**: In order to use MCT, you’ll need to provide a pre-trained floating point model (PyTorch/Keras) as an input.
|
71
71
|
|
72
72
|
### Tutorials and Examples
|
73
73
|
|
@@ -91,7 +91,7 @@ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](
|
|
91
91
|
For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
|
92
92
|
For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
|
93
93
|
|
94
|
-
**Required input**:
|
94
|
+
**Required input**: Pre-trained floating point model (PyTorch/Keras)
|
95
95
|
|
96
96
|
**Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
|
97
97
|
|
{mct_nightly-2.3.0.20250217.528.dist-info → mct_nightly-2.3.0.20250218.513.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=L4EkNtR-te33w9SEvsB2NdnEnI240JVQctspC0VdZxc,1557
|
2
2
|
model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
|
@@ -523,8 +523,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
523
523
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
|
524
524
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
525
525
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
526
|
-
mct_nightly-2.3.0.
|
527
|
-
mct_nightly-2.3.0.
|
528
|
-
mct_nightly-2.3.0.
|
529
|
-
mct_nightly-2.3.0.
|
530
|
-
mct_nightly-2.3.0.
|
526
|
+
mct_nightly-2.3.0.20250218.513.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
527
|
+
mct_nightly-2.3.0.20250218.513.dist-info/METADATA,sha256=UqI_zzn8YEFqY_SRZgaZ5jbXjNqkVUDB_crtLj9j8RI,26933
|
528
|
+
mct_nightly-2.3.0.20250218.513.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
529
|
+
mct_nightly-2.3.0.20250218.513.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
530
|
+
mct_nightly-2.3.0.20250218.513.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.3.0.
|
30
|
+
__version__ = "2.3.0.20250218.000513"
|
{mct_nightly-2.3.0.20250217.528.dist-info → mct_nightly-2.3.0.20250218.513.dist-info}/LICENSE.md
RENAMED
File without changes
|
File without changes
|
{mct_nightly-2.3.0.20250217.528.dist-info → mct_nightly-2.3.0.20250218.513.dist-info}/top_level.txt
RENAMED
File without changes
|