mct-nightly 2.3.0.20250128.506__py3-none-any.whl → 2.3.0.20250130.506__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250128.506
3
+ Version: 2.3.0.20250130.506
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -13,7 +13,6 @@ Requires-Dist: networkx!=2.8.1
13
13
  Requires-Dist: tqdm
14
14
  Requires-Dist: Pillow
15
15
  Requires-Dist: numpy<2.0
16
- Requires-Dist: opencv-python
17
16
  Requires-Dist: scikit-image
18
17
  Requires-Dist: scikit-learn
19
18
  Requires-Dist: tensorboard
@@ -1,7 +1,7 @@
1
- model_compression_toolkit/__init__.py,sha256=NiBWK1bu8jB9ldArr4OLTfKi6hZbuZki0TNDM_q61q4,1557
1
+ model_compression_toolkit/__init__.py,sha256=jy7dxrH4sWFuW9Tgny26952wBsJnBFT_ASgImBvIMo4,1557
2
2
  model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
- model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
4
+ model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
5
5
  model_compression_toolkit/metadata.py,sha256=x_Bk4VpzILdsFax6--CZ3X18qUTP28sbF_AhoQW8dNc,4003
6
6
  model_compression_toolkit/verify_packages.py,sha256=TlS-K1EP-QsghqWUW7SDPkAJiUf7ryw4tvhFDe6rCUk,1405
7
7
  model_compression_toolkit/core/__init__.py,sha256=8a0wUNBKwTdJGDk_Ho6WQAXjGuCqQZG1FUxxJlAV8L8,2096
@@ -312,7 +312,7 @@ model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py,sha
312
312
  model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
313
313
  model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py,sha256=dMc4zz9XfYfAT4Cxns57VgvGZWPAMfaGlWLFyCyl8TA,1968
314
314
  model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py,sha256=We0fVMQ4oU7Y0IWQ8fKy8KpqkIiLyKoQeF9XKAQ6TH0,3317
315
- model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py,sha256=hhWSZ7w45dE5SQ6jM27cBkCSJObWkALs_RpD6afPi68,4753
315
+ model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py,sha256=0mV2BuegNvL9MnDBu2NiJo--4KCcdDDzbWUMU4uld5w,4678
316
316
  model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py,sha256=NydGxFIclmrfU3HWYUrRbprg4hPt470QP6MTOMLEhRs,9172
317
317
  model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py,sha256=PRVmn8o2hTdwTdbd2ezf__LNbFvcgiVO0c25dsyg3Tg,6549
318
318
  model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py,sha256=zMjY2y4FSHonuY5hddbMTb8qAQtLtohYF7q1wuruDDs,3267
@@ -523,8 +523,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
523
523
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
524
524
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
525
525
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
526
- mct_nightly-2.3.0.20250128.506.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
527
- mct_nightly-2.3.0.20250128.506.dist-info/METADATA,sha256=XOxQZqPV2WdCEKPS9RStWAOlaz2lq2qpLuo9ZyQb5CU,26601
528
- mct_nightly-2.3.0.20250128.506.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
529
- mct_nightly-2.3.0.20250128.506.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
530
- mct_nightly-2.3.0.20250128.506.dist-info/RECORD,,
526
+ mct_nightly-2.3.0.20250130.506.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
527
+ mct_nightly-2.3.0.20250130.506.dist-info/METADATA,sha256=q6nMJ7sns9OXKNw4jg7etoB14DhqjJA8FaYZ967Nid0,26572
528
+ mct_nightly-2.3.0.20250130.506.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
529
+ mct_nightly-2.3.0.20250130.506.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
530
+ mct_nightly-2.3.0.20250130.506.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.3.0.20250128.000506"
30
+ __version__ = "2.3.0.20250130.000506"
@@ -15,11 +15,10 @@
15
15
  from functools import partial
16
16
  from typing import Tuple, Union, List, Callable, Dict
17
17
 
18
- import cv2
19
18
  from torch import Tensor
20
19
  from torchvision.transforms.transforms import _setup_size
21
20
  import torch
22
- import numpy as np
21
+ import torch.nn.functional as F
23
22
  from torch.utils.data import Dataset, DataLoader
24
23
 
25
24
  from model_compression_toolkit.data_generation.common.enums import DataInitType
@@ -97,9 +96,8 @@ def diverse_sample(size: Tuple[int, ...]) -> Tensor:
97
96
  sample = random_std * torch.randn(size) + random_mean
98
97
 
99
98
  # filtering to make the image a bit smoother
100
- kernel = np.ones((5, 5), np.float32) / 16
101
- if sample.shape[1] < 500 and sample.shape[2] < 500:
102
- sample = torch.from_numpy(cv2.filter2D(sample.float().detach().cpu().numpy(), -1, kernel))
99
+ kernel = torch.ones(NUM_INPUT_CHANNELS, NUM_INPUT_CHANNELS, 5, 5) / 16
100
+ sample = F.conv2d(sample, kernel, padding=1)
103
101
  return sample.float()
104
102
 
105
103
  def default_data_init_fn(
@@ -136,7 +136,6 @@ class Logger:
136
136
  msg: Message to log.
137
137
 
138
138
  """
139
- print(msg)
140
139
  Logger.get_logger().info(msg)
141
140
 
142
141
  @staticmethod
@@ -148,7 +147,6 @@ class Logger:
148
147
  msg: Message to log.
149
148
 
150
149
  """
151
- print(msg)
152
150
  Logger.get_logger().warning(msg)
153
151
 
154
152
  @staticmethod