mct-nightly 2.2.0.20250107.15510__py3-none-any.whl → 2.2.0.20250107.164940__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20250107.15510
3
+ Version: 2.2.0.20250107.164940
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=2YnbOvrfArKHSGDUnbQ59awLfgOIYR-Owy8e4iFZ8PE,1573
1
+ model_compression_toolkit/__init__.py,sha256=A5js8ho45WYpU_ZDFPmwshjYKWICZlIgdFrShfdEJGo,1573
2
2
  model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -361,10 +361,10 @@ model_compression_toolkit/gptq/common/gradual_activation_quantization.py,sha256=
361
361
  model_compression_toolkit/gptq/common/regularization_factory.py,sha256=hyunpXepVeHyoAFJw6zNLK-3ZHBmiut3lmNisJN_L3E,2514
362
362
  model_compression_toolkit/gptq/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
363
363
  model_compression_toolkit/gptq/keras/gptq_keras_implementation.py,sha256=axBwnCSjq5xk-xGymOwSOqjp39It-CVtGcCTRTf0E_4,1248
364
- model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=2hzWzsbuVd5XcL85NM57YeOyHxRY0qMArKn8NvQ1UWw,7643
364
+ model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=k5s7D4CTqbYCHgydyevw1c2p3S2TZCECHNvK79QGE2U,7797
365
365
  model_compression_toolkit/gptq/keras/gptq_training.py,sha256=0WGiP7Gs4xX3FBs1PNaZ7w3hWRigwQXqYjBrs_-x32o,23241
366
366
  model_compression_toolkit/gptq/keras/graph_info.py,sha256=zwoeHX67nJJ5-zYLjzvMXS9TLsy9BsizARbZiDVjVSA,4473
367
- model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=meRKqpzZe2Irf21L_rN_mkr5dqPTJHzfSFBeqv4Csp4,18536
367
+ model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=jUAjkIszziedftaQBSmjEL6tYEYpHhlFpSgw2X9OTf4,18672
368
368
  model_compression_toolkit/gptq/keras/quantizer/__init__.py,sha256=-DK1CDXvlsnEbki4lukZLpl6Xrbo91_jcqxXlG5Eg6Q,963
369
369
  model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py,sha256=Rbl9urzkmACvVxICSEyJ02qFOBxWK0UQWtysFJzBVZw,4899
370
370
  model_compression_toolkit/gptq/keras/quantizer/quant_utils.py,sha256=Vt7Qb8i4JsE4sFtcjpfM4FTXTtfV1t6SwfoNH8a_Iaw,5055
@@ -380,7 +380,7 @@ model_compression_toolkit/gptq/pytorch/gptq_loss.py,sha256=_07Zx_43bnNokwR5S8phI
380
380
  model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py,sha256=tECPTavxn8EEwgLaP2zvxdJH6Vg9jC0YOIMJ7857Sdc,1268
381
381
  model_compression_toolkit/gptq/pytorch/gptq_training.py,sha256=WtehnyiYXdUXf8-uNpV0mdsalF7YF7eKnL7tcFrzZoE,19549
382
382
  model_compression_toolkit/gptq/pytorch/graph_info.py,sha256=4mVM-VvnBaA64ACVdOe6wTGHdMSa2UTLIUe7nACLcdo,4008
383
- model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=kMSq9mrpcgMBRgrEKfMBHaJG6HhGRYnuiDzF4ofckwo,16581
383
+ model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=HSFpx6JgjxGhU-0jA0z85sOOgSjCq6gzDOSkmuksZVE,16713
384
384
  model_compression_toolkit/gptq/pytorch/quantizer/__init__.py,sha256=ZHNHo1yzye44m9_ht4UUZfTpK01RiVR3Tr74-vtnOGI,968
385
385
  model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py,sha256=fKg-PNOhGBiL-4eySS9Fyw0GkA76Pq8jT_HbJuJ8iZU,4143
386
386
  model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py,sha256=OocYYRqvl7rZ37QT0hTzfJnWGiNCPskg7cziTlR7TRk,3893
@@ -525,8 +525,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
525
525
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=3jNiV5Z4BVw9cEWuLKNOlLuLdr0EMuKg6eYnSiAq3LU,3952
526
526
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
527
527
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
528
- mct_nightly-2.2.0.20250107.15510.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
529
- mct_nightly-2.2.0.20250107.15510.dist-info/METADATA,sha256=hzg6vLVTb7Mr6NUgWR73ODaN4AIjmActNPhRlH7pGfM,26463
530
- mct_nightly-2.2.0.20250107.15510.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
531
- mct_nightly-2.2.0.20250107.15510.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
532
- mct_nightly-2.2.0.20250107.15510.dist-info/RECORD,,
528
+ mct_nightly-2.2.0.20250107.164940.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
529
+ mct_nightly-2.2.0.20250107.164940.dist-info/METADATA,sha256=9IxOhXh5nRY6Ck-0wINZ4huD8os58zC-X_15pdsxHCo,26464
530
+ mct_nightly-2.2.0.20250107.164940.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
531
+ mct_nightly-2.2.0.20250107.164940.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
532
+ mct_nightly-2.2.0.20250107.164940.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20250107.015510"
30
+ __version__ = "2.2.0.20250107.164940"
@@ -144,8 +144,9 @@ def activation_mse(flp_act_list,
144
144
  loss_values_list.append(point_loss)
145
145
  bias_loss_list.append(bias_loss)
146
146
  if weights_for_average_loss is not None:
147
- return tf.reduce_sum(weights_for_average_loss * tf.stack(loss_values_list)), \
148
- tf.reduce_mean(tf.stack(bias_loss_list))
147
+ print(f"weights_for_average_loss.shape: {weights_for_average_loss.shape}")
148
+ print(f"tf.stack(loss_values_list).shape: {tf.stack(loss_values_list).shape}")
149
+ return tf.reduce_sum(weights_for_average_loss * tf.stack(loss_values_list)), tf.reduce_mean(tf.stack(bias_loss_list))
149
150
  else:
150
151
  return tf.reduce_mean(tf.stack(loss_values_list)), tf.reduce_mean(tf.stack(bias_loss_list))
151
152
 
@@ -187,4 +188,4 @@ class GPTQMultipleTensorsLoss:
187
188
  weights_for_average_loss=weights_for_average_loss,
188
189
  norm_loss=self.norm_loss)
189
190
 
190
- return loss_act
191
+ return loss_act
@@ -115,7 +115,6 @@ if FOUND_TF:
115
115
  if regularization_factor is None:
116
116
  regularization_factor = REG_DEFAULT_SLA if use_hessian_sample_attention else REG_DEFAULT
117
117
 
118
- loss = loss or GPTQMultipleTensorsLoss()
119
118
  hessian_weights_config = None
120
119
  if use_hessian_sample_attention:
121
120
  if not use_hessian_based_weights: # pragma: no cover
@@ -129,7 +128,10 @@ if FOUND_TF:
129
128
  hessian_weights_config = GPTQHessianScoresConfig(per_sample=False,
130
129
  hessians_num_samples=GPTQ_HESSIAN_NUM_SAMPLES,
131
130
  hessian_batch_size=hessian_batch_size)
132
-
131
+
132
+ # If a loss was not passed (and was not initialized due to use_hessian_sample_attention), use the default loss
133
+ loss = loss or GPTQMultipleTensorsLoss()
134
+
133
135
  if isinstance(gradual_activation_quantization, bool):
134
136
  gradual_quant_config = GradualActivationQuantizationConfig() if gradual_activation_quantization else None
135
137
  elif isinstance(gradual_activation_quantization, GradualActivationQuantizationConfig):
@@ -104,7 +104,6 @@ if FOUND_TORCH:
104
104
  if regularization_factor is None:
105
105
  regularization_factor = REG_DEFAULT_SLA if use_hessian_sample_attention else REG_DEFAULT
106
106
 
107
- loss = loss or multiple_tensors_mse_loss
108
107
  hessian_weights_config = None
109
108
  if use_hessian_sample_attention:
110
109
  if not use_hessian_based_weights: # pragma: no cover
@@ -118,6 +117,9 @@ if FOUND_TORCH:
118
117
  hessian_weights_config = GPTQHessianScoresConfig(per_sample=False,
119
118
  hessians_num_samples=GPTQ_HESSIAN_NUM_SAMPLES,
120
119
  hessian_batch_size=hessian_batch_size)
120
+
121
+ # If a loss was not passed (and was not initialized due to use_hessian_sample_attention), use the default loss
122
+ loss = loss or multiple_tensors_mse_loss
121
123
 
122
124
  if isinstance(gradual_activation_quantization, bool):
123
125
  gradual_quant_config = GradualActivationQuantizationConfig() if gradual_activation_quantization else None