mct-nightly 2.2.0.20250107.15510__py3-none-any.whl → 2.2.0.20250107.164940__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.2.0.20250107.15510.dist-info → mct_nightly-2.2.0.20250107.164940.dist-info}/METADATA +1 -1
- {mct_nightly-2.2.0.20250107.15510.dist-info → mct_nightly-2.2.0.20250107.164940.dist-info}/RECORD +9 -9
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/gptq/keras/gptq_loss.py +4 -3
- model_compression_toolkit/gptq/keras/quantization_facade.py +4 -2
- model_compression_toolkit/gptq/pytorch/quantization_facade.py +3 -1
- {mct_nightly-2.2.0.20250107.15510.dist-info → mct_nightly-2.2.0.20250107.164940.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.2.0.20250107.15510.dist-info → mct_nightly-2.2.0.20250107.164940.dist-info}/WHEEL +0 -0
- {mct_nightly-2.2.0.20250107.15510.dist-info → mct_nightly-2.2.0.20250107.164940.dist-info}/top_level.txt +0 -0
{mct_nightly-2.2.0.20250107.15510.dist-info → mct_nightly-2.2.0.20250107.164940.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.20250107.
|
3
|
+
Version: 2.2.0.20250107.164940
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.2.0.20250107.15510.dist-info → mct_nightly-2.2.0.20250107.164940.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=A5js8ho45WYpU_ZDFPmwshjYKWICZlIgdFrShfdEJGo,1573
|
2
2
|
model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
|
@@ -361,10 +361,10 @@ model_compression_toolkit/gptq/common/gradual_activation_quantization.py,sha256=
|
|
361
361
|
model_compression_toolkit/gptq/common/regularization_factory.py,sha256=hyunpXepVeHyoAFJw6zNLK-3ZHBmiut3lmNisJN_L3E,2514
|
362
362
|
model_compression_toolkit/gptq/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
363
363
|
model_compression_toolkit/gptq/keras/gptq_keras_implementation.py,sha256=axBwnCSjq5xk-xGymOwSOqjp39It-CVtGcCTRTf0E_4,1248
|
364
|
-
model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=
|
364
|
+
model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=k5s7D4CTqbYCHgydyevw1c2p3S2TZCECHNvK79QGE2U,7797
|
365
365
|
model_compression_toolkit/gptq/keras/gptq_training.py,sha256=0WGiP7Gs4xX3FBs1PNaZ7w3hWRigwQXqYjBrs_-x32o,23241
|
366
366
|
model_compression_toolkit/gptq/keras/graph_info.py,sha256=zwoeHX67nJJ5-zYLjzvMXS9TLsy9BsizARbZiDVjVSA,4473
|
367
|
-
model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=
|
367
|
+
model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=jUAjkIszziedftaQBSmjEL6tYEYpHhlFpSgw2X9OTf4,18672
|
368
368
|
model_compression_toolkit/gptq/keras/quantizer/__init__.py,sha256=-DK1CDXvlsnEbki4lukZLpl6Xrbo91_jcqxXlG5Eg6Q,963
|
369
369
|
model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py,sha256=Rbl9urzkmACvVxICSEyJ02qFOBxWK0UQWtysFJzBVZw,4899
|
370
370
|
model_compression_toolkit/gptq/keras/quantizer/quant_utils.py,sha256=Vt7Qb8i4JsE4sFtcjpfM4FTXTtfV1t6SwfoNH8a_Iaw,5055
|
@@ -380,7 +380,7 @@ model_compression_toolkit/gptq/pytorch/gptq_loss.py,sha256=_07Zx_43bnNokwR5S8phI
|
|
380
380
|
model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py,sha256=tECPTavxn8EEwgLaP2zvxdJH6Vg9jC0YOIMJ7857Sdc,1268
|
381
381
|
model_compression_toolkit/gptq/pytorch/gptq_training.py,sha256=WtehnyiYXdUXf8-uNpV0mdsalF7YF7eKnL7tcFrzZoE,19549
|
382
382
|
model_compression_toolkit/gptq/pytorch/graph_info.py,sha256=4mVM-VvnBaA64ACVdOe6wTGHdMSa2UTLIUe7nACLcdo,4008
|
383
|
-
model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=
|
383
|
+
model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=HSFpx6JgjxGhU-0jA0z85sOOgSjCq6gzDOSkmuksZVE,16713
|
384
384
|
model_compression_toolkit/gptq/pytorch/quantizer/__init__.py,sha256=ZHNHo1yzye44m9_ht4UUZfTpK01RiVR3Tr74-vtnOGI,968
|
385
385
|
model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py,sha256=fKg-PNOhGBiL-4eySS9Fyw0GkA76Pq8jT_HbJuJ8iZU,4143
|
386
386
|
model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py,sha256=OocYYRqvl7rZ37QT0hTzfJnWGiNCPskg7cziTlR7TRk,3893
|
@@ -525,8 +525,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
525
525
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=3jNiV5Z4BVw9cEWuLKNOlLuLdr0EMuKg6eYnSiAq3LU,3952
|
526
526
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
527
527
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
528
|
-
mct_nightly-2.2.0.20250107.
|
529
|
-
mct_nightly-2.2.0.20250107.
|
530
|
-
mct_nightly-2.2.0.20250107.
|
531
|
-
mct_nightly-2.2.0.20250107.
|
532
|
-
mct_nightly-2.2.0.20250107.
|
528
|
+
mct_nightly-2.2.0.20250107.164940.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
529
|
+
mct_nightly-2.2.0.20250107.164940.dist-info/METADATA,sha256=9IxOhXh5nRY6Ck-0wINZ4huD8os58zC-X_15pdsxHCo,26464
|
530
|
+
mct_nightly-2.2.0.20250107.164940.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
|
531
|
+
mct_nightly-2.2.0.20250107.164940.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
532
|
+
mct_nightly-2.2.0.20250107.164940.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.20250107.
|
30
|
+
__version__ = "2.2.0.20250107.164940"
|
@@ -144,8 +144,9 @@ def activation_mse(flp_act_list,
|
|
144
144
|
loss_values_list.append(point_loss)
|
145
145
|
bias_loss_list.append(bias_loss)
|
146
146
|
if weights_for_average_loss is not None:
|
147
|
-
|
148
|
-
|
147
|
+
print(f"weights_for_average_loss.shape: {weights_for_average_loss.shape}")
|
148
|
+
print(f"tf.stack(loss_values_list).shape: {tf.stack(loss_values_list).shape}")
|
149
|
+
return tf.reduce_sum(weights_for_average_loss * tf.stack(loss_values_list)), tf.reduce_mean(tf.stack(bias_loss_list))
|
149
150
|
else:
|
150
151
|
return tf.reduce_mean(tf.stack(loss_values_list)), tf.reduce_mean(tf.stack(bias_loss_list))
|
151
152
|
|
@@ -187,4 +188,4 @@ class GPTQMultipleTensorsLoss:
|
|
187
188
|
weights_for_average_loss=weights_for_average_loss,
|
188
189
|
norm_loss=self.norm_loss)
|
189
190
|
|
190
|
-
return loss_act
|
191
|
+
return loss_act
|
@@ -115,7 +115,6 @@ if FOUND_TF:
|
|
115
115
|
if regularization_factor is None:
|
116
116
|
regularization_factor = REG_DEFAULT_SLA if use_hessian_sample_attention else REG_DEFAULT
|
117
117
|
|
118
|
-
loss = loss or GPTQMultipleTensorsLoss()
|
119
118
|
hessian_weights_config = None
|
120
119
|
if use_hessian_sample_attention:
|
121
120
|
if not use_hessian_based_weights: # pragma: no cover
|
@@ -129,7 +128,10 @@ if FOUND_TF:
|
|
129
128
|
hessian_weights_config = GPTQHessianScoresConfig(per_sample=False,
|
130
129
|
hessians_num_samples=GPTQ_HESSIAN_NUM_SAMPLES,
|
131
130
|
hessian_batch_size=hessian_batch_size)
|
132
|
-
|
131
|
+
|
132
|
+
# If a loss was not passed (and was not initialized due to use_hessian_sample_attention), use the default loss
|
133
|
+
loss = loss or GPTQMultipleTensorsLoss()
|
134
|
+
|
133
135
|
if isinstance(gradual_activation_quantization, bool):
|
134
136
|
gradual_quant_config = GradualActivationQuantizationConfig() if gradual_activation_quantization else None
|
135
137
|
elif isinstance(gradual_activation_quantization, GradualActivationQuantizationConfig):
|
@@ -104,7 +104,6 @@ if FOUND_TORCH:
|
|
104
104
|
if regularization_factor is None:
|
105
105
|
regularization_factor = REG_DEFAULT_SLA if use_hessian_sample_attention else REG_DEFAULT
|
106
106
|
|
107
|
-
loss = loss or multiple_tensors_mse_loss
|
108
107
|
hessian_weights_config = None
|
109
108
|
if use_hessian_sample_attention:
|
110
109
|
if not use_hessian_based_weights: # pragma: no cover
|
@@ -118,6 +117,9 @@ if FOUND_TORCH:
|
|
118
117
|
hessian_weights_config = GPTQHessianScoresConfig(per_sample=False,
|
119
118
|
hessians_num_samples=GPTQ_HESSIAN_NUM_SAMPLES,
|
120
119
|
hessian_batch_size=hessian_batch_size)
|
120
|
+
|
121
|
+
# If a loss was not passed (and was not initialized due to use_hessian_sample_attention), use the default loss
|
122
|
+
loss = loss or multiple_tensors_mse_loss
|
121
123
|
|
122
124
|
if isinstance(gradual_activation_quantization, bool):
|
123
125
|
gradual_quant_config = GradualActivationQuantizationConfig() if gradual_activation_quantization else None
|
File without changes
|
{mct_nightly-2.2.0.20250107.15510.dist-info → mct_nightly-2.2.0.20250107.164940.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|