mct-nightly 2.2.0.20250107.15510__py3-none-any.whl → 2.2.0.20250107.134735__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20250107.15510
3
+ Version: 2.2.0.20250107.134735
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=2YnbOvrfArKHSGDUnbQ59awLfgOIYR-Owy8e4iFZ8PE,1573
1
+ model_compression_toolkit/__init__.py,sha256=E1-liXMcmhObMC_N-_-rlLX_wgeNI7RjieTYhYT0TiI,1573
2
2
  model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -361,7 +361,7 @@ model_compression_toolkit/gptq/common/gradual_activation_quantization.py,sha256=
361
361
  model_compression_toolkit/gptq/common/regularization_factory.py,sha256=hyunpXepVeHyoAFJw6zNLK-3ZHBmiut3lmNisJN_L3E,2514
362
362
  model_compression_toolkit/gptq/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
363
363
  model_compression_toolkit/gptq/keras/gptq_keras_implementation.py,sha256=axBwnCSjq5xk-xGymOwSOqjp39It-CVtGcCTRTf0E_4,1248
364
- model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=2hzWzsbuVd5XcL85NM57YeOyHxRY0qMArKn8NvQ1UWw,7643
364
+ model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=k5s7D4CTqbYCHgydyevw1c2p3S2TZCECHNvK79QGE2U,7797
365
365
  model_compression_toolkit/gptq/keras/gptq_training.py,sha256=0WGiP7Gs4xX3FBs1PNaZ7w3hWRigwQXqYjBrs_-x32o,23241
366
366
  model_compression_toolkit/gptq/keras/graph_info.py,sha256=zwoeHX67nJJ5-zYLjzvMXS9TLsy9BsizARbZiDVjVSA,4473
367
367
  model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=meRKqpzZe2Irf21L_rN_mkr5dqPTJHzfSFBeqv4Csp4,18536
@@ -525,8 +525,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
525
525
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=3jNiV5Z4BVw9cEWuLKNOlLuLdr0EMuKg6eYnSiAq3LU,3952
526
526
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
527
527
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
528
- mct_nightly-2.2.0.20250107.15510.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
529
- mct_nightly-2.2.0.20250107.15510.dist-info/METADATA,sha256=hzg6vLVTb7Mr6NUgWR73ODaN4AIjmActNPhRlH7pGfM,26463
530
- mct_nightly-2.2.0.20250107.15510.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
531
- mct_nightly-2.2.0.20250107.15510.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
532
- mct_nightly-2.2.0.20250107.15510.dist-info/RECORD,,
528
+ mct_nightly-2.2.0.20250107.134735.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
529
+ mct_nightly-2.2.0.20250107.134735.dist-info/METADATA,sha256=C7xwYNXSPtYZ-ZmjkR7YOorNYODEUzOVUXxK6Z4_UXA,26464
530
+ mct_nightly-2.2.0.20250107.134735.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
531
+ mct_nightly-2.2.0.20250107.134735.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
532
+ mct_nightly-2.2.0.20250107.134735.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20250107.015510"
30
+ __version__ = "2.2.0.20250107.134735"
@@ -144,8 +144,9 @@ def activation_mse(flp_act_list,
144
144
  loss_values_list.append(point_loss)
145
145
  bias_loss_list.append(bias_loss)
146
146
  if weights_for_average_loss is not None:
147
- return tf.reduce_sum(weights_for_average_loss * tf.stack(loss_values_list)), \
148
- tf.reduce_mean(tf.stack(bias_loss_list))
147
+ print(f"weights_for_average_loss.shape: {weights_for_average_loss.shape}")
148
+ print(f"tf.stack(loss_values_list).shape: {tf.stack(loss_values_list).shape}")
149
+ return tf.reduce_sum(weights_for_average_loss * tf.stack(loss_values_list)), tf.reduce_mean(tf.stack(bias_loss_list))
149
150
  else:
150
151
  return tf.reduce_mean(tf.stack(loss_values_list)), tf.reduce_mean(tf.stack(bias_loss_list))
151
152
 
@@ -187,4 +188,4 @@ class GPTQMultipleTensorsLoss:
187
188
  weights_for_average_loss=weights_for_average_loss,
188
189
  norm_loss=self.norm_loss)
189
190
 
190
- return loss_act
191
+ return loss_act