mct-nightly 2.2.0.20250106.546__py3-none-any.whl → 2.2.0.20250107.15510__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.2.0.20250106.546.dist-info → mct_nightly-2.2.0.20250107.15510.dist-info}/METADATA +1 -1
- {mct_nightly-2.2.0.20250106.546.dist-info → mct_nightly-2.2.0.20250107.15510.dist-info}/RECORD +43 -78
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/core/__init__.py +1 -1
- model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +1 -1
- model_compression_toolkit/core/common/graph/memory_graph/cut.py +5 -2
- model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +25 -25
- model_compression_toolkit/core/common/quantization/quantization_config.py +19 -1
- model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +1 -33
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +2 -2
- model_compression_toolkit/core/keras/resource_utilization_data_facade.py +11 -1
- model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +499 -0
- model_compression_toolkit/core/pytorch/pytorch_implementation.py +3 -0
- model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +11 -3
- model_compression_toolkit/gptq/keras/quantization_facade.py +10 -1
- model_compression_toolkit/gptq/pytorch/quantization_facade.py +10 -1
- model_compression_toolkit/pruning/keras/pruning_facade.py +8 -2
- model_compression_toolkit/pruning/pytorch/pruning_facade.py +8 -2
- model_compression_toolkit/ptq/keras/quantization_facade.py +10 -1
- model_compression_toolkit/ptq/pytorch/quantization_facade.py +9 -1
- model_compression_toolkit/qat/__init__.py +5 -2
- model_compression_toolkit/qat/keras/quantization_facade.py +9 -1
- model_compression_toolkit/qat/pytorch/quantization_facade.py +9 -1
- model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +1 -1
- model_compression_toolkit/target_platform_capabilities/schema/v1.py +63 -55
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2fw.py +29 -18
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2keras.py +78 -57
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2pytorch.py +69 -54
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +2 -4
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -10
- model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +93 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +46 -28
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +6 -5
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +51 -19
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +8 -4
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +19 -9
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +7 -4
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +46 -32
- model_compression_toolkit/xquant/keras/keras_report_utils.py +11 -3
- model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +10 -2
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -98
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -129
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -108
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -16
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -217
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -130
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -109
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -16
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -215
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -130
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -110
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -16
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -222
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -132
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -110
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -16
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -219
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -132
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -109
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -16
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -246
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -135
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -113
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -16
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -230
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -132
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -110
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -16
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -332
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -140
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -122
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -55
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -89
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -78
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -55
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -118
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -100
- {mct_nightly-2.2.0.20250106.546.dist-info → mct_nightly-2.2.0.20250107.15510.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.2.0.20250106.546.dist-info → mct_nightly-2.2.0.20250107.15510.dist-info}/WHEEL +0 -0
- {mct_nightly-2.2.0.20250106.546.dist-info → mct_nightly-2.2.0.20250107.15510.dist-info}/top_level.txt +0 -0
@@ -1,332 +0,0 @@
|
|
1
|
-
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
from typing import List, Tuple
|
16
|
-
|
17
|
-
import model_compression_toolkit as mct
|
18
|
-
import model_compression_toolkit.target_platform_capabilities.schema.v1 as schema
|
19
|
-
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
20
|
-
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, WEIGHTS_N_BITS, \
|
21
|
-
IMX500_TP_MODEL
|
22
|
-
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformModel, \
|
23
|
-
Signedness, \
|
24
|
-
AttributeQuantizationConfig, OpQuantizationConfig
|
25
|
-
|
26
|
-
tp = mct.target_platform
|
27
|
-
|
28
|
-
OPSET_NO_QUANTIZATION = "NoQuantization"
|
29
|
-
OPSET_QUANTIZATION_PRESERVING = "QuantizationPreserving"
|
30
|
-
OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS = "DimensionManipulationOpsWithWeights"
|
31
|
-
OPSET_DIMENSION_MANIPULATION_OPS = "DimensionManipulationOps"
|
32
|
-
OPSET_SPLIT_OPS = "SplitOps"
|
33
|
-
OPSET_MERGE_OPS = "MergeOps"
|
34
|
-
OPSET_CONV = "Conv"
|
35
|
-
OPSET_FULLY_CONNECTED = "FullyConnected"
|
36
|
-
OPSET_BATCH_NORM = "BatchNorm"
|
37
|
-
OPSET_ANY_RELU = "AnyReLU"
|
38
|
-
OPSET_ADD = "Add"
|
39
|
-
OPSET_SUB = "Sub"
|
40
|
-
OPSET_MUL = "Mul"
|
41
|
-
OPSET_DIV = "Div"
|
42
|
-
OPSET_MIN_MAX = "MinMax"
|
43
|
-
OPSET_PRELU = "PReLU"
|
44
|
-
OPSET_SWISH = "Swish"
|
45
|
-
OPSET_SIGMOID = "Sigmoid"
|
46
|
-
OPSET_TANH = "Tanh"
|
47
|
-
OPSET_GELU = "Gelu"
|
48
|
-
OPSET_HARDSIGMOID = "HardSigmoid"
|
49
|
-
OPSET_HARDSWISH = "HardSwish"
|
50
|
-
|
51
|
-
|
52
|
-
def get_tp_model() -> TargetPlatformModel:
|
53
|
-
"""
|
54
|
-
A method that generates a default target platform model, with base 8-bit quantization configuration and 8, 4, 2
|
55
|
-
bits configuration list for mixed-precision quantization.
|
56
|
-
NOTE: in order to generate a target platform model with different configurations but with the same Operators Sets
|
57
|
-
(for tests, experiments, etc.), use this method implementation as a test-case, i.e., override the
|
58
|
-
'get_op_quantization_configs' method and use its output to call 'generate_tp_model' with your configurations.
|
59
|
-
This version enables metadata by default.
|
60
|
-
|
61
|
-
Returns: A TargetPlatformModel object.
|
62
|
-
|
63
|
-
"""
|
64
|
-
base_config, mixed_precision_cfg_list, default_config = get_op_quantization_configs()
|
65
|
-
return generate_tp_model(default_config=default_config,
|
66
|
-
base_config=base_config,
|
67
|
-
mixed_precision_cfg_list=mixed_precision_cfg_list,
|
68
|
-
name='imx500_tp_model')
|
69
|
-
|
70
|
-
|
71
|
-
def get_op_quantization_configs() -> \
|
72
|
-
Tuple[OpQuantizationConfig, List[OpQuantizationConfig], OpQuantizationConfig]:
|
73
|
-
"""
|
74
|
-
Creates a default configuration object for 8-bit quantization, to be used to set a default TargetPlatformModel.
|
75
|
-
In addition, creates a default configuration objects list (with 8, 4 and 2 bit quantization) to be used as
|
76
|
-
default configuration for mixed-precision quantization.
|
77
|
-
|
78
|
-
Returns: An OpQuantizationConfig config object and a list of OpQuantizationConfig objects.
|
79
|
-
|
80
|
-
"""
|
81
|
-
|
82
|
-
# TODO: currently, we don't want to quantize any attribute but the kernel by default,
|
83
|
-
# to preserve the current behavior of MCT, so quantization is disabled for all other attributes.
|
84
|
-
# Other quantization parameters are set to what we eventually want to quantize by default
|
85
|
-
# when we enable multi-attributes quantization - THIS NEED TO BE MODIFIED IN ALL TP MODELS!
|
86
|
-
|
87
|
-
# define a default quantization config for all non-specified weights attributes.
|
88
|
-
default_weight_attr_config = AttributeQuantizationConfig(
|
89
|
-
weights_quantization_method=tp.QuantizationMethod.POWER_OF_TWO,
|
90
|
-
weights_n_bits=8,
|
91
|
-
weights_per_channel_threshold=False,
|
92
|
-
enable_weights_quantization=False,
|
93
|
-
# TODO: this will changed to True once implementing multi-attributes quantization
|
94
|
-
lut_values_bitwidth=None)
|
95
|
-
|
96
|
-
# define a quantization config to quantize the kernel (for layers where there is a kernel attribute).
|
97
|
-
kernel_base_config = AttributeQuantizationConfig(
|
98
|
-
weights_quantization_method=tp.QuantizationMethod.SYMMETRIC,
|
99
|
-
weights_n_bits=8,
|
100
|
-
weights_per_channel_threshold=True,
|
101
|
-
enable_weights_quantization=True,
|
102
|
-
lut_values_bitwidth=None)
|
103
|
-
|
104
|
-
# define a quantization config to quantize the bias (for layers where there is a bias attribute).
|
105
|
-
bias_config = AttributeQuantizationConfig(
|
106
|
-
weights_quantization_method=tp.QuantizationMethod.POWER_OF_TWO,
|
107
|
-
weights_n_bits=FLOAT_BITWIDTH,
|
108
|
-
weights_per_channel_threshold=False,
|
109
|
-
enable_weights_quantization=False,
|
110
|
-
lut_values_bitwidth=None)
|
111
|
-
|
112
|
-
# Create a quantization config.
|
113
|
-
# A quantization configuration defines how an operator
|
114
|
-
# should be quantized on the modeled hardware:
|
115
|
-
|
116
|
-
# We define a default config for operation without kernel attribute.
|
117
|
-
# This is the default config that should be used for non-linear operations.
|
118
|
-
eight_bits_default = OpQuantizationConfig(
|
119
|
-
default_weight_attr_config=default_weight_attr_config,
|
120
|
-
attr_weights_configs_mapping={},
|
121
|
-
activation_quantization_method=tp.QuantizationMethod.POWER_OF_TWO,
|
122
|
-
activation_n_bits=8,
|
123
|
-
supported_input_activation_n_bits=8,
|
124
|
-
enable_activation_quantization=True,
|
125
|
-
quantization_preserving=False,
|
126
|
-
fixed_scale=None,
|
127
|
-
fixed_zero_point=None,
|
128
|
-
simd_size=32,
|
129
|
-
signedness=Signedness.AUTO)
|
130
|
-
|
131
|
-
# We define an 8-bit config for linear operations quantization, that include a kernel and bias attributes.
|
132
|
-
linear_eight_bits = OpQuantizationConfig(
|
133
|
-
default_weight_attr_config=default_weight_attr_config,
|
134
|
-
attr_weights_configs_mapping={KERNEL_ATTR: kernel_base_config, BIAS_ATTR: bias_config},
|
135
|
-
activation_quantization_method=tp.QuantizationMethod.POWER_OF_TWO,
|
136
|
-
activation_n_bits=8,
|
137
|
-
supported_input_activation_n_bits=8,
|
138
|
-
enable_activation_quantization=True,
|
139
|
-
quantization_preserving=False,
|
140
|
-
fixed_scale=None,
|
141
|
-
fixed_zero_point=None,
|
142
|
-
simd_size=32,
|
143
|
-
signedness=Signedness.AUTO)
|
144
|
-
|
145
|
-
# To quantize a model using mixed-precision, create
|
146
|
-
# a list with more than one OpQuantizationConfig.
|
147
|
-
# In this example, we quantize some operations' weights
|
148
|
-
# using 2, 4 or 8 bits, and when using 2 or 4 bits, it's possible
|
149
|
-
# to quantize the operations' activations using LUT.
|
150
|
-
four_bits = linear_eight_bits.clone_and_edit(attr_to_edit={KERNEL_ATTR: {WEIGHTS_N_BITS: 4}},
|
151
|
-
simd_size=linear_eight_bits.simd_size * 2)
|
152
|
-
two_bits = linear_eight_bits.clone_and_edit(attr_to_edit={KERNEL_ATTR: {WEIGHTS_N_BITS: 2}},
|
153
|
-
simd_size=linear_eight_bits.simd_size * 4)
|
154
|
-
|
155
|
-
mixed_precision_cfg_list = [linear_eight_bits, four_bits, two_bits]
|
156
|
-
|
157
|
-
return linear_eight_bits, mixed_precision_cfg_list, eight_bits_default
|
158
|
-
|
159
|
-
|
160
|
-
def generate_tp_model(default_config: OpQuantizationConfig,
|
161
|
-
base_config: OpQuantizationConfig,
|
162
|
-
mixed_precision_cfg_list: List[OpQuantizationConfig],
|
163
|
-
name: str) -> TargetPlatformModel:
|
164
|
-
"""
|
165
|
-
Generates TargetPlatformModel with default defined Operators Sets, based on the given base configuration and
|
166
|
-
mixed-precision configurations options list.
|
167
|
-
|
168
|
-
Args
|
169
|
-
default_config: A default OpQuantizationConfig to set as the TP model default configuration.
|
170
|
-
base_config: An OpQuantizationConfig to set as the TargetPlatformModel base configuration for mixed-precision purposes only.
|
171
|
-
mixed_precision_cfg_list: A list of OpQuantizationConfig to be used as the TP model mixed-precision
|
172
|
-
quantization configuration options.
|
173
|
-
name: The name of the TargetPlatformModel.
|
174
|
-
|
175
|
-
Returns: A TargetPlatformModel object.
|
176
|
-
|
177
|
-
"""
|
178
|
-
# Create a QuantizationConfigOptions, which defines a set
|
179
|
-
# of possible configurations to consider when quantizing a set of operations (in mixed-precision, for example).
|
180
|
-
# If the QuantizationConfigOptions contains only one configuration,
|
181
|
-
# this configuration will be used for the operation quantization:
|
182
|
-
default_configuration_options = schema.QuantizationConfigOptions(quantization_configurations=tuple([default_config]))
|
183
|
-
default_config_input16 = default_config.clone_and_edit(supported_input_activation_n_bits=(8, 16))
|
184
|
-
default_config_options_16bit = schema.QuantizationConfigOptions(quantization_configurations=tuple([default_config_input16,
|
185
|
-
default_config_input16.clone_and_edit(
|
186
|
-
activation_n_bits=16,
|
187
|
-
signedness=Signedness.SIGNED)]),
|
188
|
-
base_config=default_config_input16)
|
189
|
-
|
190
|
-
qpreseving_config = default_config.clone_and_edit(enable_activation_quantization=False,
|
191
|
-
quantization_preserving=True,
|
192
|
-
supported_input_activation_n_bits=(8, 16))
|
193
|
-
|
194
|
-
qpreseving_config_options = schema.QuantizationConfigOptions(quantization_configurations=tuple([qpreseving_config,
|
195
|
-
qpreseving_config.clone_and_edit(
|
196
|
-
activation_n_bits=16,
|
197
|
-
signedness=Signedness.SIGNED)]),
|
198
|
-
base_config=qpreseving_config)
|
199
|
-
|
200
|
-
# Create a QuantizationConfigOptions for quantizing constants in functional ops.
|
201
|
-
# Constant configuration is similar to the default eight bit configuration except for PoT
|
202
|
-
# quantization method for the constant.
|
203
|
-
# Since the constants are not named attributes of the layer, we use the default_weight_attr_config to
|
204
|
-
# define the desired quantization properties for them.
|
205
|
-
const_config = default_config.clone_and_edit(
|
206
|
-
default_weight_attr_config=default_config.default_weight_attr_config.clone_and_edit(
|
207
|
-
enable_weights_quantization=True, weights_per_channel_threshold=True,
|
208
|
-
weights_quantization_method=tp.QuantizationMethod.POWER_OF_TWO))
|
209
|
-
const_configuration_options = schema.QuantizationConfigOptions(quantization_configurations=tuple([const_config]))
|
210
|
-
|
211
|
-
# 16 bits inputs and outputs. Currently, only defined for consts since they are used in operators that
|
212
|
-
# support 16 bit as input and output.
|
213
|
-
const_config_input16 = const_config.clone_and_edit(
|
214
|
-
supported_input_activation_n_bits=(8, 16))
|
215
|
-
const_config_input16_output16 = const_config_input16.clone_and_edit(
|
216
|
-
activation_n_bits=16, signedness=Signedness.SIGNED)
|
217
|
-
const_configuration_options_inout16 = schema.QuantizationConfigOptions(
|
218
|
-
quantization_configurations=tuple([const_config_input16_output16,
|
219
|
-
const_config_input16]),
|
220
|
-
base_config=const_config_input16)
|
221
|
-
|
222
|
-
const_config_input16_per_tensor = const_config.clone_and_edit(
|
223
|
-
supported_input_activation_n_bits=(8, 16),
|
224
|
-
default_weight_attr_config=default_config.default_weight_attr_config.clone_and_edit(
|
225
|
-
enable_weights_quantization=True, weights_per_channel_threshold=False,
|
226
|
-
weights_quantization_method=tp.QuantizationMethod.POWER_OF_TWO)
|
227
|
-
)
|
228
|
-
const_config_input16_output16_per_tensor = const_config_input16_per_tensor.clone_and_edit(
|
229
|
-
activation_n_bits=16, signedness=Signedness.SIGNED)
|
230
|
-
const_configuration_options_inout16_per_tensor = schema.QuantizationConfigOptions(quantization_configurations=tuple(
|
231
|
-
[const_config_input16_output16_per_tensor,
|
232
|
-
const_config_input16_per_tensor]),
|
233
|
-
base_config=const_config_input16_per_tensor)
|
234
|
-
|
235
|
-
qpreserving_const_config = const_config.clone_and_edit(enable_activation_quantization=False,
|
236
|
-
quantization_preserving=True,
|
237
|
-
default_weight_attr_config=const_config.default_weight_attr_config.clone_and_edit(
|
238
|
-
weights_per_channel_threshold=False))
|
239
|
-
qpreserving_const_config_options = schema.QuantizationConfigOptions(quantization_configurations=tuple([qpreserving_const_config]))
|
240
|
-
|
241
|
-
mp_cfg_list_16bit = [mp_cfg.clone_and_edit(activation_n_bits=16, signedness=Signedness.SIGNED)
|
242
|
-
for mp_cfg in mixed_precision_cfg_list]
|
243
|
-
|
244
|
-
# Create Mixed-Precision quantization configuration options from the given list of OpQuantizationConfig objects
|
245
|
-
mixed_precision_configuration_options = schema.QuantizationConfigOptions(quantization_configurations=tuple(
|
246
|
-
mixed_precision_cfg_list + mp_cfg_list_16bit),
|
247
|
-
base_config=base_config)
|
248
|
-
|
249
|
-
# Create an OperatorsSet to represent a set of operations.
|
250
|
-
# Each OperatorsSet has a unique label.
|
251
|
-
# If a quantization configuration options is passed, these options will
|
252
|
-
# be used for operations that will be attached to this set's label.
|
253
|
-
# Otherwise, it will be a configure-less set (used in fusing):
|
254
|
-
operator_set = []
|
255
|
-
fusing_patterns = []
|
256
|
-
# May suit for operations like: Dropout, Reshape, etc.
|
257
|
-
operator_set.append(schema.OperatorsSet(name=OPSET_NO_QUANTIZATION,
|
258
|
-
qc_options=default_configuration_options.clone_and_edit(
|
259
|
-
enable_activation_quantization=False)
|
260
|
-
.clone_and_edit_weight_attribute(enable_weights_quantization=False)))
|
261
|
-
operator_set.append(schema.OperatorsSet(name=OPSET_QUANTIZATION_PRESERVING,
|
262
|
-
qc_options=default_configuration_options.clone_and_edit(
|
263
|
-
enable_activation_quantization=False,
|
264
|
-
quantization_preserving=True)
|
265
|
-
.clone_and_edit_weight_attribute(enable_weights_quantization=False)))
|
266
|
-
operator_set.append(
|
267
|
-
schema.OperatorsSet(name=OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS,
|
268
|
-
qc_options=qpreserving_const_config_options))
|
269
|
-
operator_set.append(schema.OperatorsSet(name=OPSET_DIMENSION_MANIPULATION_OPS,
|
270
|
-
qc_options=default_configuration_options.clone_and_edit(
|
271
|
-
enable_activation_quantization=False,
|
272
|
-
quantization_preserving=True,
|
273
|
-
supported_input_activation_n_bits=(8, 16))
|
274
|
-
.clone_and_edit_weight_attribute(enable_weights_quantization=False)))
|
275
|
-
|
276
|
-
operator_set.append(schema.OperatorsSet(name=OPSET_SPLIT_OPS, qc_options=qpreseving_config_options))
|
277
|
-
operator_set.append(schema.OperatorsSet(name=OPSET_MERGE_OPS, qc_options=const_configuration_options_inout16_per_tensor))
|
278
|
-
|
279
|
-
# Define operator sets that use mixed_precision_configuration_options:
|
280
|
-
conv = schema.OperatorsSet(name=OPSET_CONV, qc_options=mixed_precision_configuration_options)
|
281
|
-
fc = schema.OperatorsSet(name=OPSET_FULLY_CONNECTED, qc_options=mixed_precision_configuration_options)
|
282
|
-
|
283
|
-
operator_set.append(schema.OperatorsSet(name=OPSET_BATCH_NORM, qc_options=default_config_options_16bit))
|
284
|
-
|
285
|
-
# Note: Operations sets without quantization configuration are useful for creating fusing patterns
|
286
|
-
any_relu = schema.OperatorsSet(name=OPSET_ANY_RELU, qc_options=default_config_options_16bit)
|
287
|
-
add = schema.OperatorsSet(name=OPSET_ADD, qc_options=const_configuration_options_inout16)
|
288
|
-
sub = schema.OperatorsSet(name=OPSET_SUB, qc_options=const_configuration_options_inout16)
|
289
|
-
mul = schema.OperatorsSet(name=OPSET_MUL, qc_options=const_configuration_options_inout16)
|
290
|
-
div = schema.OperatorsSet(name=OPSET_DIV, qc_options=const_configuration_options)
|
291
|
-
min_max = schema.OperatorsSet(name=OPSET_MIN_MAX, qc_options=const_configuration_options_inout16)
|
292
|
-
prelu = schema.OperatorsSet(name=OPSET_PRELU, qc_options=default_config_options_16bit)
|
293
|
-
swish = schema.OperatorsSet(name=OPSET_SWISH, qc_options=default_config_options_16bit)
|
294
|
-
sigmoid = schema.OperatorsSet(name=OPSET_SIGMOID, qc_options=default_config_options_16bit)
|
295
|
-
tanh = schema.OperatorsSet(name=OPSET_TANH, qc_options=default_config_options_16bit)
|
296
|
-
gelu = schema.OperatorsSet(name=OPSET_GELU, qc_options=default_config_options_16bit)
|
297
|
-
hardsigmoid = schema.OperatorsSet(name=OPSET_HARDSIGMOID, qc_options=default_config_options_16bit)
|
298
|
-
hardswish = schema.OperatorsSet(name=OPSET_HARDSWISH, qc_options=default_config_options_16bit)
|
299
|
-
|
300
|
-
operator_set.extend(
|
301
|
-
[conv, fc, any_relu, add, sub, mul, div, prelu, swish, sigmoid, tanh, min_max, gelu, hardsigmoid, hardswish])
|
302
|
-
# Combine multiple operators into a single operator to avoid quantization between
|
303
|
-
# them. To do this we define fusing patterns using the OperatorsSets that were created.
|
304
|
-
# To group multiple sets with regard to fusing, an OperatorSetConcat can be created
|
305
|
-
activations_after_conv_to_fuse = schema.OperatorSetConcat(operators_set=[any_relu, swish, prelu, sigmoid,
|
306
|
-
tanh, gelu, hardswish, hardsigmoid])
|
307
|
-
activations_after_fc_to_fuse = schema.OperatorSetConcat(operators_set=[any_relu, swish, sigmoid, tanh, gelu,
|
308
|
-
hardswish, hardsigmoid])
|
309
|
-
any_binary = schema.OperatorSetConcat(operators_set=[add, sub, mul, div])
|
310
|
-
|
311
|
-
# ------------------- #
|
312
|
-
# Fusions
|
313
|
-
# ------------------- #
|
314
|
-
fusing_patterns.append(schema.Fusing(operator_groups=(conv, activations_after_conv_to_fuse)))
|
315
|
-
fusing_patterns.append(schema.Fusing(operator_groups=(fc, activations_after_fc_to_fuse)))
|
316
|
-
fusing_patterns.append(schema.Fusing(operator_groups=(any_binary, any_relu)))
|
317
|
-
|
318
|
-
# Create a TargetPlatformModel and set its default quantization config.
|
319
|
-
# This default configuration will be used for all operations
|
320
|
-
# unless specified otherwise (see OperatorsSet, for example):
|
321
|
-
generated_tpm = schema.TargetPlatformModel(
|
322
|
-
default_qco=default_configuration_options,
|
323
|
-
tpc_minor_version=4,
|
324
|
-
tpc_patch_version=0,
|
325
|
-
tpc_platform_type=IMX500_TP_MODEL,
|
326
|
-
operator_set=tuple(operator_set),
|
327
|
-
fusing_patterns=tuple(fusing_patterns),
|
328
|
-
add_metadata=True,
|
329
|
-
name=name,
|
330
|
-
is_simd_padding=True)
|
331
|
-
|
332
|
-
return generated_tpm
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py
DELETED
@@ -1,140 +0,0 @@
|
|
1
|
-
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
import tensorflow as tf
|
16
|
-
from packaging import version
|
17
|
-
|
18
|
-
import model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema as schema
|
19
|
-
from model_compression_toolkit.defaultdict import DefaultDict
|
20
|
-
from model_compression_toolkit.verify_packages import FOUND_SONY_CUSTOM_LAYERS
|
21
|
-
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, KERAS_DEPTHWISE_KERNEL, \
|
22
|
-
KERAS_KERNEL, BIAS_ATTR, BIAS
|
23
|
-
|
24
|
-
if FOUND_SONY_CUSTOM_LAYERS:
|
25
|
-
from sony_custom_layers.keras.object_detection.ssd_post_process import SSDPostProcess
|
26
|
-
|
27
|
-
if version.parse(tf.__version__) >= version.parse("2.13"):
|
28
|
-
from keras.src.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
|
29
|
-
MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
|
30
|
-
Conv2DTranspose, Identity, Concatenate, BatchNormalization, Minimum, Maximum
|
31
|
-
else:
|
32
|
-
from keras.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
|
33
|
-
MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
|
34
|
-
Conv2DTranspose, Identity, Concatenate, BatchNormalization, Minimum, Maximum
|
35
|
-
|
36
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import get_tp_model
|
37
|
-
import model_compression_toolkit as mct
|
38
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4 import __version__ as TPC_VERSION
|
39
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
|
40
|
-
OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
|
41
|
-
OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
|
42
|
-
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH, OPSET_GELU, OPSET_BATCH_NORM, OPSET_MIN_MAX, OPSET_HARDSIGMOID, \
|
43
|
-
OPSET_SPLIT_OPS
|
44
|
-
|
45
|
-
tp = mct.target_platform
|
46
|
-
|
47
|
-
|
48
|
-
def get_keras_tpc() -> tp.TargetPlatformCapabilities:
|
49
|
-
"""
|
50
|
-
get a Keras TargetPlatformCapabilities object with default operation sets to layers mapping.
|
51
|
-
|
52
|
-
Returns: a Keras TargetPlatformCapabilities object for the given TargetPlatformModel.
|
53
|
-
"""
|
54
|
-
imx500_tpc_tp_model = get_tp_model()
|
55
|
-
return generate_keras_tpc(name='imx500_tpc_keras_tpc', tp_model=imx500_tpc_tp_model)
|
56
|
-
|
57
|
-
|
58
|
-
def generate_keras_tpc(name: str, tp_model: schema.TargetPlatformModel):
|
59
|
-
"""
|
60
|
-
Generates a TargetPlatformCapabilities object with default operation sets to layers mapping.
|
61
|
-
|
62
|
-
Args:
|
63
|
-
name: Name of the TargetPlatformCapabilities.
|
64
|
-
tp_model: TargetPlatformModel object.
|
65
|
-
|
66
|
-
Returns: a TargetPlatformCapabilities object for the given TargetPlatformModel.
|
67
|
-
"""
|
68
|
-
|
69
|
-
keras_tpc = tp.TargetPlatformCapabilities(tp_model)
|
70
|
-
|
71
|
-
no_quant_list = [tf.quantization.fake_quant_with_min_max_vars,
|
72
|
-
tf.math.argmax,
|
73
|
-
tf.shape,
|
74
|
-
tf.math.equal,
|
75
|
-
tf.nn.top_k,
|
76
|
-
tf.image.combined_non_max_suppression,
|
77
|
-
tf.compat.v1.shape]
|
78
|
-
quantization_preserving = [Cropping2D,
|
79
|
-
ZeroPadding2D,
|
80
|
-
Dropout,
|
81
|
-
MaxPooling2D,
|
82
|
-
tf.cast]
|
83
|
-
quantization_preserving_list_16bit_input = [Reshape,
|
84
|
-
tf.reshape,
|
85
|
-
Permute,
|
86
|
-
tf.transpose,
|
87
|
-
Flatten]
|
88
|
-
|
89
|
-
if FOUND_SONY_CUSTOM_LAYERS:
|
90
|
-
no_quant_list.append(SSDPostProcess)
|
91
|
-
|
92
|
-
with keras_tpc:
|
93
|
-
tp.OperationsSetToLayers(OPSET_NO_QUANTIZATION, no_quant_list)
|
94
|
-
tp.OperationsSetToLayers(OPSET_QUANTIZATION_PRESERVING, quantization_preserving)
|
95
|
-
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS, quantization_preserving_list_16bit_input)
|
96
|
-
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [tf.gather, tf.compat.v1.gather])
|
97
|
-
tp.OperationsSetToLayers(OPSET_SPLIT_OPS,[tf.unstack, tf.split, tf.strided_slice, tf.__operators__.getitem])
|
98
|
-
tp.OperationsSetToLayers(OPSET_MERGE_OPS, [tf.stack, tf.concat, Concatenate])
|
99
|
-
tp.OperationsSetToLayers(OPSET_CONV,
|
100
|
-
[Conv2D,
|
101
|
-
DepthwiseConv2D,
|
102
|
-
Conv2DTranspose,
|
103
|
-
tf.nn.conv2d,
|
104
|
-
tf.nn.depthwise_conv2d,
|
105
|
-
tf.nn.conv2d_transpose],
|
106
|
-
# we provide attributes mapping that maps each layer type in the operations set
|
107
|
-
# that has weights attributes with provided quantization config (in the tp model) to
|
108
|
-
# its framework-specific attribute name.
|
109
|
-
# note that a DefaultDict should be provided if not all the layer types in the
|
110
|
-
# operation set are provided separately in the mapping.
|
111
|
-
attr_mapping={
|
112
|
-
KERNEL_ATTR: DefaultDict({
|
113
|
-
DepthwiseConv2D: KERAS_DEPTHWISE_KERNEL,
|
114
|
-
tf.nn.depthwise_conv2d: KERAS_DEPTHWISE_KERNEL}, default_value=KERAS_KERNEL),
|
115
|
-
BIAS_ATTR: DefaultDict(default_value=BIAS)})
|
116
|
-
tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Dense],
|
117
|
-
attr_mapping={KERNEL_ATTR: DefaultDict(default_value=KERAS_KERNEL),
|
118
|
-
BIAS_ATTR: DefaultDict(default_value=BIAS)})
|
119
|
-
tp.OperationsSetToLayers(OPSET_BATCH_NORM, [BatchNormalization])
|
120
|
-
tp.OperationsSetToLayers(OPSET_ANY_RELU, [tf.nn.relu,
|
121
|
-
tf.nn.relu6,
|
122
|
-
tf.nn.leaky_relu,
|
123
|
-
ReLU,
|
124
|
-
LeakyReLU,
|
125
|
-
tp.LayerFilterParams(Activation, activation="relu"),
|
126
|
-
tp.LayerFilterParams(Activation, activation="leaky_relu")])
|
127
|
-
tp.OperationsSetToLayers(OPSET_ADD, [tf.add, Add])
|
128
|
-
tp.OperationsSetToLayers(OPSET_SUB, [tf.subtract, Subtract])
|
129
|
-
tp.OperationsSetToLayers(OPSET_MUL, [tf.math.multiply, Multiply])
|
130
|
-
tp.OperationsSetToLayers(OPSET_DIV, [tf.math.divide, tf.math.truediv])
|
131
|
-
tp.OperationsSetToLayers(OPSET_MIN_MAX, [tf.math.minimum, tf.math.maximum, Minimum, Maximum])
|
132
|
-
tp.OperationsSetToLayers(OPSET_PRELU, [PReLU])
|
133
|
-
tp.OperationsSetToLayers(OPSET_SWISH, [tf.nn.swish, tp.LayerFilterParams(Activation, activation="swish")])
|
134
|
-
tp.OperationsSetToLayers(OPSET_SIGMOID, [tf.nn.sigmoid, tp.LayerFilterParams(Activation, activation="sigmoid")])
|
135
|
-
tp.OperationsSetToLayers(OPSET_TANH, [tf.nn.tanh, tp.LayerFilterParams(Activation, activation="tanh")])
|
136
|
-
tp.OperationsSetToLayers(OPSET_GELU, [tf.nn.gelu, tp.LayerFilterParams(Activation, activation="gelu")])
|
137
|
-
tp.OperationsSetToLayers(OPSET_HARDSIGMOID, [tf.keras.activations.hard_sigmoid,
|
138
|
-
tp.LayerFilterParams(Activation, activation="hard_sigmoid")])
|
139
|
-
|
140
|
-
return keras_tpc
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py
DELETED
@@ -1,122 +0,0 @@
|
|
1
|
-
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
import operator
|
17
|
-
|
18
|
-
import torch
|
19
|
-
from torch import add, sub, mul, div, divide, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, \
|
20
|
-
chunk, unbind, topk, gather, equal, transpose, permute, argmax, squeeze, multiply, subtract, minimum, \
|
21
|
-
maximum
|
22
|
-
from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d, BatchNorm2d
|
23
|
-
from torch.nn import Dropout, Flatten, Hardtanh
|
24
|
-
from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, Hardsigmoid, LeakyReLU, GELU
|
25
|
-
import torch.nn.functional as F
|
26
|
-
from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, hardsigmoid, leaky_relu, gelu
|
27
|
-
|
28
|
-
import model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema as schema
|
29
|
-
from model_compression_toolkit.defaultdict import DefaultDict
|
30
|
-
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, PYTORCH_KERNEL, \
|
31
|
-
BIAS
|
32
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import get_tp_model
|
33
|
-
import model_compression_toolkit as mct
|
34
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4 import __version__ as TPC_VERSION
|
35
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
|
36
|
-
OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
|
37
|
-
OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
|
38
|
-
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH, OPSET_GELU, OPSET_BATCH_NORM, OPSET_MIN_MAX, OPSET_HARDSIGMOID, \
|
39
|
-
OPSET_HARDSWISH, OPSET_SPLIT_OPS
|
40
|
-
|
41
|
-
tp = mct.target_platform
|
42
|
-
|
43
|
-
|
44
|
-
def get_pytorch_tpc() -> tp.TargetPlatformCapabilities:
|
45
|
-
"""
|
46
|
-
get a Pytorch TargetPlatformCapabilities object with default operation sets to layers mapping.
|
47
|
-
|
48
|
-
Returns: a Pytorch TargetPlatformCapabilities object for the given TargetPlatformModel.
|
49
|
-
"""
|
50
|
-
imx500_tpc_tp_model = get_tp_model()
|
51
|
-
return generate_pytorch_tpc(name='imx500_tpc_pytorch_tpc', tp_model=imx500_tpc_tp_model)
|
52
|
-
|
53
|
-
|
54
|
-
def generate_pytorch_tpc(name: str, tp_model: schema.TargetPlatformModel):
|
55
|
-
"""
|
56
|
-
Generates a TargetPlatformCapabilities object with default operation sets to layers mapping.
|
57
|
-
Args:
|
58
|
-
name: Name of the TargetPlatformModel.
|
59
|
-
tp_model: TargetPlatformModel object.
|
60
|
-
Returns: a TargetPlatformCapabilities object for the given TargetPlatformModel.
|
61
|
-
"""
|
62
|
-
|
63
|
-
pytorch_tpc = tp.TargetPlatformCapabilities(tp_model)
|
64
|
-
|
65
|
-
# we provide attributes mapping that maps each layer type in the operations set
|
66
|
-
# that has weights attributes with provided quantization config (in the tp model) to
|
67
|
-
# its framework-specific attribute name.
|
68
|
-
# note that a DefaultDict should be provided if not all the layer types in the
|
69
|
-
# operation set are provided separately in the mapping.
|
70
|
-
pytorch_linear_attr_mapping = {KERNEL_ATTR: DefaultDict(default_value=PYTORCH_KERNEL),
|
71
|
-
BIAS_ATTR: DefaultDict(default_value=BIAS)}
|
72
|
-
|
73
|
-
with pytorch_tpc:
|
74
|
-
tp.OperationsSetToLayers(OPSET_NO_QUANTIZATION, [torch.Tensor.size,
|
75
|
-
equal,
|
76
|
-
argmax,
|
77
|
-
topk])
|
78
|
-
tp.OperationsSetToLayers(OPSET_QUANTIZATION_PRESERVING, [Dropout,
|
79
|
-
dropout,
|
80
|
-
MaxPool2d])
|
81
|
-
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS, [Flatten,
|
82
|
-
flatten,
|
83
|
-
operator.getitem,
|
84
|
-
reshape,
|
85
|
-
unsqueeze,
|
86
|
-
squeeze,
|
87
|
-
permute,
|
88
|
-
transpose])
|
89
|
-
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [gather, torch.Tensor.expand])
|
90
|
-
tp.OperationsSetToLayers(OPSET_SPLIT_OPS,[split, chunk, unbind])
|
91
|
-
tp.OperationsSetToLayers(OPSET_MERGE_OPS,
|
92
|
-
[torch.stack, torch.cat, torch.concat, torch.concatenate])
|
93
|
-
|
94
|
-
tp.OperationsSetToLayers(OPSET_CONV, [Conv2d, ConvTranspose2d],
|
95
|
-
attr_mapping=pytorch_linear_attr_mapping)
|
96
|
-
tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Linear],
|
97
|
-
attr_mapping=pytorch_linear_attr_mapping)
|
98
|
-
tp.OperationsSetToLayers(OPSET_BATCH_NORM, [BatchNorm2d])
|
99
|
-
tp.OperationsSetToLayers(OPSET_ANY_RELU, [torch.relu,
|
100
|
-
ReLU,
|
101
|
-
ReLU6,
|
102
|
-
LeakyReLU,
|
103
|
-
relu,
|
104
|
-
relu6,
|
105
|
-
leaky_relu,
|
106
|
-
tp.LayerFilterParams(Hardtanh, min_val=0),
|
107
|
-
tp.LayerFilterParams(hardtanh, min_val=0)])
|
108
|
-
|
109
|
-
tp.OperationsSetToLayers(OPSET_ADD, [operator.add, add])
|
110
|
-
tp.OperationsSetToLayers(OPSET_SUB, [operator.sub, sub, subtract])
|
111
|
-
tp.OperationsSetToLayers(OPSET_MUL, [operator.mul, mul, multiply])
|
112
|
-
tp.OperationsSetToLayers(OPSET_DIV, [operator.truediv, div, divide])
|
113
|
-
tp.OperationsSetToLayers(OPSET_MIN_MAX, [minimum, maximum])
|
114
|
-
tp.OperationsSetToLayers(OPSET_PRELU, [PReLU, prelu])
|
115
|
-
tp.OperationsSetToLayers(OPSET_SWISH, [SiLU, silu])
|
116
|
-
tp.OperationsSetToLayers(OPSET_SIGMOID, [Sigmoid, sigmoid, F.sigmoid])
|
117
|
-
tp.OperationsSetToLayers(OPSET_TANH, [Tanh, tanh, F.tanh])
|
118
|
-
tp.OperationsSetToLayers(OPSET_GELU, [GELU, gelu])
|
119
|
-
tp.OperationsSetToLayers(OPSET_HARDSIGMOID, [Hardsigmoid, hardsigmoid])
|
120
|
-
tp.OperationsSetToLayers(OPSET_HARDSWISH, [Hardswish, hardswish])
|
121
|
-
|
122
|
-
return pytorch_tpc
|
@@ -1,55 +0,0 @@
|
|
1
|
-
# Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
from model_compression_toolkit.constants import TENSORFLOW, PYTORCH
|
17
|
-
from model_compression_toolkit.verify_packages import FOUND_TORCH, FOUND_TF
|
18
|
-
from model_compression_toolkit.logger import Logger
|
19
|
-
from model_compression_toolkit.target_platform_capabilities.constants import LATEST
|
20
|
-
|
21
|
-
def get_tpc_dict_by_fw(fw_name):
|
22
|
-
tpc_models_dict = None
|
23
|
-
if fw_name == TENSORFLOW:
|
24
|
-
###############################
|
25
|
-
# Build Tensorflow TPC models
|
26
|
-
###############################
|
27
|
-
if FOUND_TF:
|
28
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.qnnpack_tpc.v1.tpc_keras import \
|
29
|
-
get_keras_tpc as get_keras_tpc_v1
|
30
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.qnnpack_tpc.latest import \
|
31
|
-
get_keras_tpc_latest
|
32
|
-
|
33
|
-
# Keras: TPC versioning
|
34
|
-
tpc_models_dict = {'v1': get_keras_tpc_v1,
|
35
|
-
LATEST: get_keras_tpc_latest}
|
36
|
-
elif fw_name == PYTORCH:
|
37
|
-
###############################
|
38
|
-
# Build Pytorch TPC models
|
39
|
-
###############################
|
40
|
-
if FOUND_TORCH:
|
41
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.qnnpack_tpc.v1.tpc_pytorch import \
|
42
|
-
get_pytorch_tpc as get_pytorch_tpc_v1
|
43
|
-
from model_compression_toolkit.target_platform_capabilities.tpc_models.qnnpack_tpc.latest import \
|
44
|
-
get_pytorch_tpc_latest
|
45
|
-
|
46
|
-
# Pytorch: TPC versioning
|
47
|
-
tpc_models_dict = {'v1': get_pytorch_tpc_v1,
|
48
|
-
LATEST: get_pytorch_tpc_latest}
|
49
|
-
if tpc_models_dict is not None:
|
50
|
-
return tpc_models_dict
|
51
|
-
else:
|
52
|
-
Logger.critical(f'Framework {fw_name} is not supported in imx500 or the relevant packages are not '
|
53
|
-
f'installed. Please make sure the relevant packages are installed when using MCT for optimizing'
|
54
|
-
f' a {fw_name} model. For Tensorflow, please install tensorflow. For PyTorch, please install '
|
55
|
-
f'torch.') # pragma: no cover
|