mct-nightly 2.2.0.20241231.516__py3-none-any.whl → 2.2.0.20250103.535__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250103.535.dist-info}/METADATA +8 -11
- {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250103.535.dist-info}/RECORD +18 -18
- {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250103.535.dist-info}/WHEEL +1 -1
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +6 -4
- model_compression_toolkit/target_platform_capabilities/schema/v1.py +308 -173
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +22 -22
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +22 -22
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +22 -22
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +21 -21
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +22 -22
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +25 -25
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +23 -23
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +46 -42
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +10 -10
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +49 -46
- {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250103.535.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250103.535.dist-info}/top_level.txt +0 -0
{mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250103.535.dist-info}/METADATA
RENAMED
@@ -1,16 +1,14 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.
|
3
|
+
Version: 2.2.0.20250103.535
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
|
-
Home-page: UNKNOWN
|
6
|
-
License: UNKNOWN
|
7
|
-
Platform: UNKNOWN
|
8
5
|
Classifier: Programming Language :: Python :: 3
|
9
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
10
7
|
Classifier: Operating System :: OS Independent
|
11
8
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
12
9
|
Requires-Python: >=3.6
|
13
10
|
Description-Content-Type: text/markdown
|
11
|
+
License-File: LICENSE.md
|
14
12
|
Requires-Dist: networkx!=2.8.1
|
15
13
|
Requires-Dist: tqdm
|
16
14
|
Requires-Dist: Pillow
|
@@ -24,13 +22,14 @@ Requires-Dist: matplotlib<3.10.0
|
|
24
22
|
Requires-Dist: scipy
|
25
23
|
Requires-Dist: protobuf
|
26
24
|
Requires-Dist: mct-quantizers==1.5.2
|
25
|
+
Requires-Dist: pydantic<2.0
|
27
26
|
|
28
27
|
<div align="center" markdown="1">
|
29
28
|
<p>
|
30
29
|
<a href="https://sony.github.io/model_optimization/" target="_blank">
|
31
30
|
<img src="/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
|
32
31
|
</p>
|
33
|
-
|
32
|
+
|
34
33
|
______________________________________________________________________
|
35
34
|
|
36
35
|
</div>
|
@@ -49,7 +48,7 @@ ______________________________________________________________________
|
|
49
48
|
<a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
|
50
49
|
<a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
|
51
50
|
<a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
|
52
|
-
|
51
|
+
|
53
52
|
</p>
|
54
53
|
</div>
|
55
54
|
|
@@ -88,7 +87,7 @@ For each flow, **Quantization core** utilizes various algorithms and hyper-param
|
|
88
87
|
For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
|
89
88
|
|
90
89
|
**Required input**: Floating point model - 32bit model in either .pt or .keras format
|
91
|
-
|
90
|
+
|
92
91
|
**Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
|
93
92
|
|
94
93
|
<div align="center">
|
@@ -145,9 +144,9 @@ More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](ht
|
|
145
144
|
* [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
|
146
145
|
* [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
|
147
146
|
* [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
|
148
|
-
|
147
|
+
|
149
148
|
* [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
|
150
|
-
|
149
|
+
|
151
150
|
* [Release notes](https://github.com/sony/model_optimization/releases)
|
152
151
|
|
153
152
|
|
@@ -231,5 +230,3 @@ MCT is licensed under Apache License Version 2.0. By contributing to the project
|
|
231
230
|
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
|
232
231
|
|
233
232
|
[5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://arxiv.org/abs/2410.22110)
|
234
|
-
|
235
|
-
|
{mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250103.535.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=s7cQaA4zZ3gVMYYi_8ROpyJqZeyU4iix1N4150qGtoc,1573
|
2
2
|
model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
|
@@ -232,7 +232,7 @@ model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py,s
|
|
232
232
|
model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py,sha256=tLrlUyYhxVKVjkad1ZAtbRra0HedB3iVfIkZ_dYnQ-4,3419
|
233
233
|
model_compression_toolkit/core/pytorch/back2framework/instance_builder.py,sha256=BBHBfTqeWm7L3iDyPBpk0jxvj-rBg1QWI23imkjfIl0,1467
|
234
234
|
model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py,sha256=D7lU1r9Uq_7fdNuKk2BMF8ho5GrsY-8gyGN6yYoHaVg,15060
|
235
|
-
model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py,sha256=
|
235
|
+
model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py,sha256=AnFn-3OJ-RUh2OPXOsnx798DFrfhnta7_JVvZk3SJGs,19903
|
236
236
|
model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py,sha256=qZNNOlNTTV4ZKPG3q5GDXkIVTPUEr8dvxAS_YiMORmg,3456
|
237
237
|
model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
238
238
|
model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py,sha256=q2JDw10NKng50ee2i9faGzWZ-IydnR2aOMGSn9RoZmc,5773
|
@@ -433,7 +433,7 @@ model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROB
|
|
433
433
|
model_compression_toolkit/target_platform_capabilities/schema/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
|
434
434
|
model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py,sha256=E6Zz8boibgfq8EVpZWyl0TOdFrv9qrwiVHUzYPIKVrQ,528
|
435
435
|
model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py,sha256=ZDFN2N4dRRP6qs0HxsHXEJbZCwYByo3JL9sBCJolDBs,4656
|
436
|
-
model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=
|
436
|
+
model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=Tl71jtE0bkMei1hCgxjS1LFmHNVEAmxFKAltb3UId6Y,27666
|
437
437
|
model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=1FXmDVSqm-dr3xzH4vRo4NmAgyzBZjqHo5l63MUq4r0,1403
|
438
438
|
model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py,sha256=WCP1wfFZgM4eFm-pPeUinr5R_aSx5qwfSQqLZCXUNBA,1513
|
439
439
|
model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2fw.py,sha256=GK_eI9Oq-kgBdfXm0AwgXkYgGKL0FEthqrTd0X_XWg0,2872
|
@@ -451,49 +451,49 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__i
|
|
451
451
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=yIWwvfTpiT0wRf7GwPgK9elKbGh46jxCrkcLVEjvesU,6081
|
452
452
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=eVIRpx5O0JQI7TSdw5JAWtwrG3MQ8-7hYThQvB9da5c,1528
|
453
453
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
|
454
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=
|
454
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=TbUKrPAy4xntH1UIWS-rOngJhSHFQiHZl4dHKvve2WM,11449
|
455
455
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=DiEVKde6bZiRDcoeTKzbrfjFIDVEeES0Q_Ms50NbW7Y,6568
|
456
456
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=rQY-ApvLKo9LbN2uKO2NsdOgX49TKcED3o8mBxWAFKw,5594
|
457
457
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py,sha256=vFDyiMymNZSRCdTgAyWn4A-tZD3vzze_PTLBSF2OYe8,721
|
458
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=
|
458
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=ip8MRXok-3mhQDTZW4mctPn8Lvdaw46Ds1DHd4cSGLA,11352
|
459
459
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=I3NnmCBSB6KB8ECXJsfXw6FD-ONj39RXL-yB2-nE1xI,6577
|
460
460
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=R6ZDXT2bwAmdZfmXxIoCo7-_h7oGfyr6cZoZmBJdPa0,5713
|
461
461
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py,sha256=NUuczImqUxzdfflqSdqkeAN8aCU6Tuiu6U0Fnj9Tzmw,721
|
462
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=
|
462
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=PCV_SIENE65Ap15ka52yJde98Llsi5YGx7Uvx5aBkDg,11138
|
463
463
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=ovHI4lvlcP_haolXmL8TvIpPi9tglhdUxRxNxuf6QPk,6581
|
464
464
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=PgNAmXZx7hg46KwR16laU7jr2U35rnHiTcR25RaLxd0,5732
|
465
465
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py,sha256=vKWAoQ2KkhuptS5HZB50zHG6KY8wHpHTxPugw_nGCRo,717
|
466
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=
|
466
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=3Q3THifL5TUrEGweFL_t2nOpf-h7ipA38FZyanGSdxk,11524
|
467
467
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=i6oEt_3FAeccU9QkVCVxWZf2aX17IExAljR8y13k9P4,6663
|
468
468
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=Iwi-D_0iC19Lo3yWduuaItezXFrRxRhowUY4jGOtwXk,5700
|
469
469
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py,sha256=wUk4Xsg7jpxOWYjq2K3WUwLcI185p_sVPK-ttG0ydhA,721
|
470
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=
|
470
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=sV43EqH6gZzW8MGuMzCqLAPMRzLafcr1LpSmz5NJUjg,11404
|
471
471
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=e3su6KmNsc2ziP3eEICp-tcnY9YmGPiLoMJ3TreqVx4,6671
|
472
472
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=9W-pjOhONqgym1t2vDRTo7x-JQiVlxQsAKAG6HdAww4,5707
|
473
473
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py,sha256=gAeebYCKyIXH9-Qwze7FwvTihudzAHk_Qsg94fQbkjQ,717
|
474
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=
|
474
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=Z7QdKzO4zUAhq_sab0N7tWsrhi6hoLIpvK4kI84h-eQ,13595
|
475
475
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=vbBgQfEd5mLnJKGX2CO-KA0x87_qTmDH7HbbtLgCIfg,6881
|
476
476
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py,sha256=oDG_Ln0mPmt8p5eKrjGQlHLHCApErLHazny9bIfu3iI,5968
|
477
477
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py,sha256=C2kwyDE1-rtukkbNSoKRv9q8Nt2GOCaBbl0BdOr3goA,721
|
478
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=
|
478
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=ogo0fXC3os0M5yogWE9g3hSKey7PYxaO5jqj3nXQh5Q,12373
|
479
479
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=hHK7MY6xfSCRnXQ6Qz0hbN_hM18f-gf3uZmxdl44khU,6679
|
480
480
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=GmS3CuSQPwLSgPdruXCSHN49_fRiRBn9PKA9CPmtqM8,5789
|
481
481
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py,sha256=tHTUvsaerSfbe22pU0kIDauPpFD7Pq5EmZytVIDkHz4,717
|
482
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=
|
482
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=qmv2ZA5QsUy3fwX44dF1WBJZVki9xuGOScIY4zIqI4I,19288
|
483
483
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=IlaTaq2VnGibqwr-rKkqRTD-FK58H1CHGiPiopXD5VA,8291
|
484
484
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=7AhR56oCyXVLvWPB36tNiaLRIGzDLWYXghUjTRADX5s,7094
|
485
485
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
486
486
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=is00rNrDmmirYsyMtMkWz0DwOA92-x7hAJwpd6z1n2E,2806
|
487
487
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=CXC-HQolSDu7j8V-Xm-SWGCd74gXB3XnAkEhI_TVbIQ,1516
|
488
488
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
|
489
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256
|
489
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=-v7mqYyMTRTpRpyCAij4ycOvogUV9ObfJLoCVeZ24HA,8655
|
490
490
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py,sha256=JKJy4k7TBCRZQ_cSWNhEdvyg5ylvIcpjU_6GALBOaFI,4461
|
491
491
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py,sha256=x5ooqCuKtW6ULenncjwSs_HTps8yUylOBKOzpgJ4yYI,3788
|
492
492
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
493
493
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py,sha256=_tf41m40fbax27y5A5JoGHw4p5NY-Kb3c8oxSTnRD_E,2802
|
494
494
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=LIUUQn42YU7oD2YfnEgP0gfqm7Hq9e0fD_8418aKzKI,1511
|
495
495
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
|
496
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=
|
496
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=jXyp2qZ0VlpquviXjPwoDd1sZl56yXVDaosQhQTslL4,10930
|
497
497
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=4vQG9uaV5bAte1VP8oMT5dwiDisW84F1B-de0BdBusY,6808
|
498
498
|
model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py,sha256=uG27HAOrD-JMSDXaEycDJeFGqhF8J3ZqKI4CJCW6zA4,5934
|
499
499
|
model_compression_toolkit/trainable_infrastructure/__init__.py,sha256=uewpvlPkH9mBFt8IxoAgIfz6iEcvWbOImm_fb6_BxD8,1543
|
@@ -560,8 +560,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
560
560
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
|
561
561
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
562
562
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
563
|
-
mct_nightly-2.2.0.
|
564
|
-
mct_nightly-2.2.0.
|
565
|
-
mct_nightly-2.2.0.
|
566
|
-
mct_nightly-2.2.0.
|
567
|
-
mct_nightly-2.2.0.
|
563
|
+
mct_nightly-2.2.0.20250103.535.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
564
|
+
mct_nightly-2.2.0.20250103.535.dist-info/METADATA,sha256=JLlZkEFZk1-CAJuJoHMFX-OyCQbkFgZdt7peDDugIIE,26461
|
565
|
+
mct_nightly-2.2.0.20250103.535.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
|
566
|
+
mct_nightly-2.2.0.20250103.535.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
567
|
+
mct_nightly-2.2.0.20250103.535.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20250103.000535"
|
@@ -12,9 +12,10 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
import copy
|
15
16
|
from abc import abstractmethod
|
16
17
|
from functools import partial
|
17
|
-
from typing import Tuple, Any, Dict, List,
|
18
|
+
from typing import Tuple, Any, Dict, List, Callable
|
18
19
|
|
19
20
|
import torch
|
20
21
|
import numpy as np
|
@@ -30,7 +31,6 @@ from model_compression_toolkit.core.common.graph.functional_node import Function
|
|
30
31
|
from model_compression_toolkit.core.common.user_info import UserInformation
|
31
32
|
from model_compression_toolkit.core.pytorch.back2framework.instance_builder import node_builder
|
32
33
|
from model_compression_toolkit.core.pytorch.default_framework_info import DEFAULT_PYTORCH_INFO
|
33
|
-
from model_compression_toolkit.core.pytorch.pytorch_device_config import get_working_device
|
34
34
|
from model_compression_toolkit.core.pytorch.reader.node_holders import DummyPlaceHolder
|
35
35
|
from model_compression_toolkit.core.pytorch.utils import to_torch_tensor
|
36
36
|
from mct_quantizers.common.constants import ACTIVATION_HOLDER_QUANTIZER
|
@@ -224,8 +224,10 @@ class PytorchModel(torch.nn.Module):
|
|
224
224
|
|
225
225
|
"""
|
226
226
|
super(PytorchModel, self).__init__()
|
227
|
-
self.graph = graph
|
228
|
-
self.
|
227
|
+
self.graph = copy.deepcopy(graph)
|
228
|
+
delattr(self.graph, 'tpc')
|
229
|
+
|
230
|
+
self.node_sort = list(topological_sort(self.graph))
|
229
231
|
self.node_to_activation_quantization_holder = {}
|
230
232
|
self.append2output = append2output
|
231
233
|
self.return_float_outputs = return_float_outputs
|