mct-nightly 2.2.0.20241231.516__py3-none-any.whl → 2.2.0.20250102.111338__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (17) hide show
  1. {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250102.111338.dist-info}/METADATA +8 -11
  2. {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250102.111338.dist-info}/RECORD +17 -17
  3. {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250102.111338.dist-info}/WHEEL +1 -1
  4. model_compression_toolkit/__init__.py +1 -1
  5. model_compression_toolkit/target_platform_capabilities/schema/v1.py +308 -173
  6. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +22 -22
  7. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +22 -22
  8. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +22 -22
  9. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +21 -21
  10. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +22 -22
  11. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +25 -25
  12. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +23 -23
  13. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +46 -42
  14. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +10 -10
  15. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +49 -46
  16. {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250102.111338.dist-info}/LICENSE.md +0 -0
  17. {mct_nightly-2.2.0.20241231.516.dist-info → mct_nightly-2.2.0.20250102.111338.dist-info}/top_level.txt +0 -0
@@ -1,16 +1,14 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241231.516
3
+ Version: 2.2.0.20250102.111338
4
4
  Summary: A Model Compression Toolkit for neural networks
5
- Home-page: UNKNOWN
6
- License: UNKNOWN
7
- Platform: UNKNOWN
8
5
  Classifier: Programming Language :: Python :: 3
9
6
  Classifier: License :: OSI Approved :: Apache Software License
10
7
  Classifier: Operating System :: OS Independent
11
8
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
12
9
  Requires-Python: >=3.6
13
10
  Description-Content-Type: text/markdown
11
+ License-File: LICENSE.md
14
12
  Requires-Dist: networkx!=2.8.1
15
13
  Requires-Dist: tqdm
16
14
  Requires-Dist: Pillow
@@ -24,13 +22,14 @@ Requires-Dist: matplotlib<3.10.0
24
22
  Requires-Dist: scipy
25
23
  Requires-Dist: protobuf
26
24
  Requires-Dist: mct-quantizers==1.5.2
25
+ Requires-Dist: pydantic<2.0
27
26
 
28
27
  <div align="center" markdown="1">
29
28
  <p>
30
29
  <a href="https://sony.github.io/model_optimization/" target="_blank">
31
30
  <img src="/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
32
31
  </p>
33
-
32
+
34
33
  ______________________________________________________________________
35
34
 
36
35
  </div>
@@ -49,7 +48,7 @@ ______________________________________________________________________
49
48
  <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
50
49
  <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
51
50
  <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
52
-
51
+
53
52
  </p>
54
53
  </div>
55
54
 
@@ -88,7 +87,7 @@ For each flow, **Quantization core** utilizes various algorithms and hyper-param
88
87
  For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
89
88
 
90
89
  **Required input**: Floating point model - 32bit model in either .pt or .keras format
91
-
90
+
92
91
  **Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
93
92
 
94
93
  <div align="center">
@@ -145,9 +144,9 @@ More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](ht
145
144
  * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
146
145
  * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
147
146
  * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
148
-
147
+
149
148
  * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
150
-
149
+
151
150
  * [Release notes](https://github.com/sony/model_optimization/releases)
152
151
 
153
152
 
@@ -231,5 +230,3 @@ MCT is licensed under Apache License Version 2.0. By contributing to the project
231
230
  [4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
232
231
 
233
232
  [5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://arxiv.org/abs/2410.22110)
234
-
235
-
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=BKJvBXohfBVQ4uiANJjSSxeE1wGUmbOEQBQbqdMmAX8,1573
1
+ model_compression_toolkit/__init__.py,sha256=-qfPVtYGb_fix-jrA3JQIUYatRe21E3D33A-IbJZl_Q,1573
2
2
  model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -433,7 +433,7 @@ model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROB
433
433
  model_compression_toolkit/target_platform_capabilities/schema/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
434
434
  model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py,sha256=E6Zz8boibgfq8EVpZWyl0TOdFrv9qrwiVHUzYPIKVrQ,528
435
435
  model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py,sha256=ZDFN2N4dRRP6qs0HxsHXEJbZCwYByo3JL9sBCJolDBs,4656
436
- model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=GsToWecNswbQCnLPBNsFBK5uX8B69jN9N-tXEmmU6WI,25223
436
+ model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=Tl71jtE0bkMei1hCgxjS1LFmHNVEAmxFKAltb3UId6Y,27666
437
437
  model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=1FXmDVSqm-dr3xzH4vRo4NmAgyzBZjqHo5l63MUq4r0,1403
438
438
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py,sha256=WCP1wfFZgM4eFm-pPeUinr5R_aSx5qwfSQqLZCXUNBA,1513
439
439
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2fw.py,sha256=GK_eI9Oq-kgBdfXm0AwgXkYgGKL0FEthqrTd0X_XWg0,2872
@@ -451,49 +451,49 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__i
451
451
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=yIWwvfTpiT0wRf7GwPgK9elKbGh46jxCrkcLVEjvesU,6081
452
452
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=eVIRpx5O0JQI7TSdw5JAWtwrG3MQ8-7hYThQvB9da5c,1528
453
453
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
454
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=S2KHNfxzj6X_xFprLIYqYC3dcozHYTlsiW1LqVBnQkc,11198
454
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=TbUKrPAy4xntH1UIWS-rOngJhSHFQiHZl4dHKvve2WM,11449
455
455
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=DiEVKde6bZiRDcoeTKzbrfjFIDVEeES0Q_Ms50NbW7Y,6568
456
456
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=rQY-ApvLKo9LbN2uKO2NsdOgX49TKcED3o8mBxWAFKw,5594
457
457
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py,sha256=vFDyiMymNZSRCdTgAyWn4A-tZD3vzze_PTLBSF2OYe8,721
458
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=gW_Yw7w2eQAb70Nqghv1btc9CTubMVpzjt7b2kxj-Hs,11101
458
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=ip8MRXok-3mhQDTZW4mctPn8Lvdaw46Ds1DHd4cSGLA,11352
459
459
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=I3NnmCBSB6KB8ECXJsfXw6FD-ONj39RXL-yB2-nE1xI,6577
460
460
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=R6ZDXT2bwAmdZfmXxIoCo7-_h7oGfyr6cZoZmBJdPa0,5713
461
461
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py,sha256=NUuczImqUxzdfflqSdqkeAN8aCU6Tuiu6U0Fnj9Tzmw,721
462
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=7fplCIkjNlPXgJQiYJlWeHBBOxDcjKjDMD23h0g_nt0,10887
462
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=PCV_SIENE65Ap15ka52yJde98Llsi5YGx7Uvx5aBkDg,11138
463
463
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=ovHI4lvlcP_haolXmL8TvIpPi9tglhdUxRxNxuf6QPk,6581
464
464
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=PgNAmXZx7hg46KwR16laU7jr2U35rnHiTcR25RaLxd0,5732
465
465
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py,sha256=vKWAoQ2KkhuptS5HZB50zHG6KY8wHpHTxPugw_nGCRo,717
466
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=et3hrgpF2hm5zqfvhSc2B4peIYmBddGbKVF2eQb7Q4U,11273
466
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=3Q3THifL5TUrEGweFL_t2nOpf-h7ipA38FZyanGSdxk,11524
467
467
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=i6oEt_3FAeccU9QkVCVxWZf2aX17IExAljR8y13k9P4,6663
468
468
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=Iwi-D_0iC19Lo3yWduuaItezXFrRxRhowUY4jGOtwXk,5700
469
469
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py,sha256=wUk4Xsg7jpxOWYjq2K3WUwLcI185p_sVPK-ttG0ydhA,721
470
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=DCuslGtM4NT-NvPK8dpINa0t9gIjyP4325YaqtNukSk,11153
470
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=sV43EqH6gZzW8MGuMzCqLAPMRzLafcr1LpSmz5NJUjg,11404
471
471
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=e3su6KmNsc2ziP3eEICp-tcnY9YmGPiLoMJ3TreqVx4,6671
472
472
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=9W-pjOhONqgym1t2vDRTo7x-JQiVlxQsAKAG6HdAww4,5707
473
473
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py,sha256=gAeebYCKyIXH9-Qwze7FwvTihudzAHk_Qsg94fQbkjQ,717
474
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=ngIP70u-_tA-XKXu4pTbXu2GDaWjnYwz08BCRdOeVlQ,13228
474
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=Z7QdKzO4zUAhq_sab0N7tWsrhi6hoLIpvK4kI84h-eQ,13595
475
475
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=vbBgQfEd5mLnJKGX2CO-KA0x87_qTmDH7HbbtLgCIfg,6881
476
476
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py,sha256=oDG_Ln0mPmt8p5eKrjGQlHLHCApErLHazny9bIfu3iI,5968
477
477
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py,sha256=C2kwyDE1-rtukkbNSoKRv9q8Nt2GOCaBbl0BdOr3goA,721
478
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=pPEXKAzLKp7AWhN2ysIJElAcY7FID1dVTLxDvz5xAOo,12050
478
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=ogo0fXC3os0M5yogWE9g3hSKey7PYxaO5jqj3nXQh5Q,12373
479
479
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=hHK7MY6xfSCRnXQ6Qz0hbN_hM18f-gf3uZmxdl44khU,6679
480
480
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=GmS3CuSQPwLSgPdruXCSHN49_fRiRBn9PKA9CPmtqM8,5789
481
481
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py,sha256=tHTUvsaerSfbe22pU0kIDauPpFD7Pq5EmZytVIDkHz4,717
482
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=l2h5Wql5_3UM_qd1p_BrQHjPpuZRTPcXNXgVbDyPlmA,18671
482
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=qmv2ZA5QsUy3fwX44dF1WBJZVki9xuGOScIY4zIqI4I,19288
483
483
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=IlaTaq2VnGibqwr-rKkqRTD-FK58H1CHGiPiopXD5VA,8291
484
484
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=7AhR56oCyXVLvWPB36tNiaLRIGzDLWYXghUjTRADX5s,7094
485
485
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
486
486
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=is00rNrDmmirYsyMtMkWz0DwOA92-x7hAJwpd6z1n2E,2806
487
487
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=CXC-HQolSDu7j8V-Xm-SWGCd74gXB3XnAkEhI_TVbIQ,1516
488
488
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
489
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=yNwypIat2hVgwDKitw7enfPJYzvOThB2E76dOT0jglY,8531
489
+ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=-v7mqYyMTRTpRpyCAij4ycOvogUV9ObfJLoCVeZ24HA,8655
490
490
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py,sha256=JKJy4k7TBCRZQ_cSWNhEdvyg5ylvIcpjU_6GALBOaFI,4461
491
491
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py,sha256=x5ooqCuKtW6ULenncjwSs_HTps8yUylOBKOzpgJ4yYI,3788
492
492
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
493
493
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py,sha256=_tf41m40fbax27y5A5JoGHw4p5NY-Kb3c8oxSTnRD_E,2802
494
494
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=LIUUQn42YU7oD2YfnEgP0gfqm7Hq9e0fD_8418aKzKI,1511
495
495
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
496
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=U-I3eFBeRhc_BC16RyP_i_8e6ZP-X0klCa10k8QvddE,10383
496
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=jXyp2qZ0VlpquviXjPwoDd1sZl56yXVDaosQhQTslL4,10930
497
497
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=4vQG9uaV5bAte1VP8oMT5dwiDisW84F1B-de0BdBusY,6808
498
498
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py,sha256=uG27HAOrD-JMSDXaEycDJeFGqhF8J3ZqKI4CJCW6zA4,5934
499
499
  model_compression_toolkit/trainable_infrastructure/__init__.py,sha256=uewpvlPkH9mBFt8IxoAgIfz6iEcvWbOImm_fb6_BxD8,1543
@@ -560,8 +560,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
560
560
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
561
561
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
562
562
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
563
- mct_nightly-2.2.0.20241231.516.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
564
- mct_nightly-2.2.0.20241231.516.dist-info/METADATA,sha256=lfsmkINpoJ-Ael_k81Ushjyw4Mk2tATpOjigEWaok3E,26453
565
- mct_nightly-2.2.0.20241231.516.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
566
- mct_nightly-2.2.0.20241231.516.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
567
- mct_nightly-2.2.0.20241231.516.dist-info/RECORD,,
563
+ mct_nightly-2.2.0.20250102.111338.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
564
+ mct_nightly-2.2.0.20250102.111338.dist-info/METADATA,sha256=Ttj0NMBFjJmpTyJT0rOFgLypwaojPKwZvsoptYZKczo,26464
565
+ mct_nightly-2.2.0.20250102.111338.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
566
+ mct_nightly-2.2.0.20250102.111338.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
567
+ mct_nightly-2.2.0.20250102.111338.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.45.1)
2
+ Generator: setuptools (75.6.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241231.000516"
30
+ __version__ = "2.2.0.20250102.111338"