mct-nightly 2.2.0.20241230.534__py3-none-any.whl → 2.2.0.20241231.516__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.2.0.20241230.534.dist-info → mct_nightly-2.2.0.20241231.516.dist-info}/METADATA +1 -1
- {mct_nightly-2.2.0.20241230.534.dist-info → mct_nightly-2.2.0.20241231.516.dist-info}/RECORD +9 -9
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +11 -0
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +4 -6
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +2 -4
- {mct_nightly-2.2.0.20241230.534.dist-info → mct_nightly-2.2.0.20241231.516.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.2.0.20241230.534.dist-info → mct_nightly-2.2.0.20241231.516.dist-info}/WHEEL +0 -0
- {mct_nightly-2.2.0.20241230.534.dist-info → mct_nightly-2.2.0.20241231.516.dist-info}/top_level.txt +0 -0
{mct_nightly-2.2.0.20241230.534.dist-info → mct_nightly-2.2.0.20241231.516.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=BKJvBXohfBVQ4uiANJjSSxeE1wGUmbOEQBQbqdMmAX8,1573
|
2
2
|
model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
|
@@ -479,9 +479,9 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_
|
|
479
479
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=hHK7MY6xfSCRnXQ6Qz0hbN_hM18f-gf3uZmxdl44khU,6679
|
480
480
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=GmS3CuSQPwLSgPdruXCSHN49_fRiRBn9PKA9CPmtqM8,5789
|
481
481
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py,sha256=tHTUvsaerSfbe22pU0kIDauPpFD7Pq5EmZytVIDkHz4,717
|
482
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=
|
483
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=
|
484
|
-
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=
|
482
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=l2h5Wql5_3UM_qd1p_BrQHjPpuZRTPcXNXgVbDyPlmA,18671
|
483
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=IlaTaq2VnGibqwr-rKkqRTD-FK58H1CHGiPiopXD5VA,8291
|
484
|
+
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=7AhR56oCyXVLvWPB36tNiaLRIGzDLWYXghUjTRADX5s,7094
|
485
485
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
486
486
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=is00rNrDmmirYsyMtMkWz0DwOA92-x7hAJwpd6z1n2E,2806
|
487
487
|
model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=CXC-HQolSDu7j8V-Xm-SWGCd74gXB3XnAkEhI_TVbIQ,1516
|
@@ -560,8 +560,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
560
560
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
|
561
561
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
562
562
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
563
|
-
mct_nightly-2.2.0.
|
564
|
-
mct_nightly-2.2.0.
|
565
|
-
mct_nightly-2.2.0.
|
566
|
-
mct_nightly-2.2.0.
|
567
|
-
mct_nightly-2.2.0.
|
563
|
+
mct_nightly-2.2.0.20241231.516.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
564
|
+
mct_nightly-2.2.0.20241231.516.dist-info/METADATA,sha256=lfsmkINpoJ-Ael_k81Ushjyw4Mk2tATpOjigEWaok3E,26453
|
565
|
+
mct_nightly-2.2.0.20241231.516.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
566
|
+
mct_nightly-2.2.0.20241231.516.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
567
|
+
mct_nightly-2.2.0.20241231.516.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20241231.000516"
|
@@ -29,6 +29,7 @@ OPSET_NO_QUANTIZATION = "NoQuantization"
|
|
29
29
|
OPSET_QUANTIZATION_PRESERVING = "QuantizationPreserving"
|
30
30
|
OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS = "DimensionManipulationOpsWithWeights"
|
31
31
|
OPSET_DIMENSION_MANIPULATION_OPS = "DimensionManipulationOps"
|
32
|
+
OPSET_SPLIT_OPS = "SplitOps"
|
32
33
|
OPSET_MERGE_OPS = "MergeOps"
|
33
34
|
OPSET_CONV = "Conv"
|
34
35
|
OPSET_FULLY_CONNECTED = "FullyConnected"
|
@@ -186,6 +187,15 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
186
187
|
signedness=Signedness.SIGNED)]),
|
187
188
|
base_config=default_config_input16)
|
188
189
|
|
190
|
+
qpreseving_config = default_config.clone_and_edit(enable_activation_quantization=False,
|
191
|
+
quantization_preserving=True,
|
192
|
+
supported_input_activation_n_bits=(8, 16))
|
193
|
+
qpreseving_config_options = schema.QuantizationConfigOptions(tuple([qpreseving_config,
|
194
|
+
qpreseving_config.clone_and_edit(
|
195
|
+
activation_n_bits=16,
|
196
|
+
signedness=Signedness.SIGNED)]),
|
197
|
+
base_config=qpreseving_config)
|
198
|
+
|
189
199
|
# Create a QuantizationConfigOptions for quantizing constants in functional ops.
|
190
200
|
# Constant configuration is similar to the default eight bit configuration except for PoT
|
191
201
|
# quantization method for the constant.
|
@@ -259,6 +269,7 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
259
269
|
quantization_preserving=True,
|
260
270
|
supported_input_activation_n_bits=(8, 16))
|
261
271
|
.clone_and_edit_weight_attribute(enable_weights_quantization=False)))
|
272
|
+
operator_set.append(schema.OperatorsSet(OPSET_SPLIT_OPS, qpreseving_config_options))
|
262
273
|
operator_set.append(schema.OperatorsSet(OPSET_MERGE_OPS, const_configuration_options_inout16_per_tensor))
|
263
274
|
|
264
275
|
# Define operator sets that use mixed_precision_configuration_options:
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py
CHANGED
@@ -39,7 +39,8 @@ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tp
|
|
39
39
|
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
|
40
40
|
OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
|
41
41
|
OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
|
42
|
-
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH, OPSET_GELU, OPSET_BATCH_NORM, OPSET_MIN_MAX, OPSET_HARDSIGMOID
|
42
|
+
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH, OPSET_GELU, OPSET_BATCH_NORM, OPSET_MIN_MAX, OPSET_HARDSIGMOID, \
|
43
|
+
OPSET_SPLIT_OPS
|
43
44
|
|
44
45
|
tp = mct.target_platform
|
45
46
|
|
@@ -78,11 +79,7 @@ def generate_keras_tpc(name: str, tp_model: schema.TargetPlatformModel):
|
|
78
79
|
ZeroPadding2D,
|
79
80
|
Dropout,
|
80
81
|
MaxPooling2D,
|
81
|
-
tf.
|
82
|
-
tf.cast,
|
83
|
-
tf.unstack,
|
84
|
-
tf.__operators__.getitem,
|
85
|
-
tf.strided_slice]
|
82
|
+
tf.cast]
|
86
83
|
quantization_preserving_list_16bit_input = [Reshape,
|
87
84
|
tf.reshape,
|
88
85
|
Permute,
|
@@ -97,6 +94,7 @@ def generate_keras_tpc(name: str, tp_model: schema.TargetPlatformModel):
|
|
97
94
|
tp.OperationsSetToLayers(OPSET_QUANTIZATION_PRESERVING, quantization_preserving)
|
98
95
|
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS, quantization_preserving_list_16bit_input)
|
99
96
|
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [tf.gather, tf.compat.v1.gather])
|
97
|
+
tp.OperationsSetToLayers(OPSET_SPLIT_OPS,[tf.unstack, tf.split, tf.strided_slice, tf.__operators__.getitem])
|
100
98
|
tp.OperationsSetToLayers(OPSET_MERGE_OPS, [tf.stack, tf.concat, Concatenate])
|
101
99
|
tp.OperationsSetToLayers(OPSET_CONV,
|
102
100
|
[Conv2D,
|
model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py
CHANGED
@@ -36,7 +36,7 @@ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tp
|
|
36
36
|
OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
|
37
37
|
OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
|
38
38
|
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH, OPSET_GELU, OPSET_BATCH_NORM, OPSET_MIN_MAX, OPSET_HARDSIGMOID, \
|
39
|
-
OPSET_HARDSWISH
|
39
|
+
OPSET_HARDSWISH, OPSET_SPLIT_OPS
|
40
40
|
|
41
41
|
tp = mct.target_platform
|
42
42
|
|
@@ -77,9 +77,6 @@ def generate_pytorch_tpc(name: str, tp_model: schema.TargetPlatformModel):
|
|
77
77
|
topk])
|
78
78
|
tp.OperationsSetToLayers(OPSET_QUANTIZATION_PRESERVING, [Dropout,
|
79
79
|
dropout,
|
80
|
-
split,
|
81
|
-
chunk,
|
82
|
-
unbind,
|
83
80
|
MaxPool2d])
|
84
81
|
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS, [Flatten,
|
85
82
|
flatten,
|
@@ -90,6 +87,7 @@ def generate_pytorch_tpc(name: str, tp_model: schema.TargetPlatformModel):
|
|
90
87
|
permute,
|
91
88
|
transpose])
|
92
89
|
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [gather, torch.Tensor.expand])
|
90
|
+
tp.OperationsSetToLayers(OPSET_SPLIT_OPS,[split, chunk, unbind])
|
93
91
|
tp.OperationsSetToLayers(OPSET_MERGE_OPS,
|
94
92
|
[torch.stack, torch.cat, torch.concat, torch.concatenate])
|
95
93
|
|
{mct_nightly-2.2.0.20241230.534.dist-info → mct_nightly-2.2.0.20241231.516.dist-info}/LICENSE.md
RENAMED
File without changes
|
File without changes
|
{mct_nightly-2.2.0.20241230.534.dist-info → mct_nightly-2.2.0.20241231.516.dist-info}/top_level.txt
RENAMED
File without changes
|