mct-nightly 2.2.0.20241130.524__py3-none-any.whl → 2.2.0.20241202.537__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241130.524
3
+ Version: 2.2.0.20241202.537
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=l-Qxy4jVbsYv-Gd0Qvek91njFTELVXTcqm_ZGKjM_FA,1573
1
+ model_compression_toolkit/__init__.py,sha256=_GqcWoF0XRtWGL2fdmtZxcyxsni8F0f4kGgpq8MWQ6o,1573
2
2
  model_compression_toolkit/constants.py,sha256=i4wYheBkIdQmsQA-axIpcT3YiSO1USNc-jaNiNE8w6E,3920
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -33,9 +33,9 @@ model_compression_toolkit/core/common/fusion/graph_fuser.py,sha256=8seu9jBpC7Har
33
33
  model_compression_toolkit/core/common/fusion/layer_fusing.py,sha256=lOubqpc18TslhXZijWUJQAa1c3jIB2S-M-5HK78wJPQ,5548
34
34
  model_compression_toolkit/core/common/graph/__init__.py,sha256=Xr-Lt_qXMdrCnnOaUS_OJP_3iTTGfPCLf8_vSrQgCs0,773
35
35
  model_compression_toolkit/core/common/graph/base_graph.py,sha256=lg5QaBkRbmvM3tGZ0Q34S3m0CbFql3LUv5BaXLe5TG8,37824
36
- model_compression_toolkit/core/common/graph/base_node.py,sha256=W6xXj3U0vPlSAoEBuw1fZ1E5I1YNaeTcrNum4JDKdj8,31619
36
+ model_compression_toolkit/core/common/graph/base_node.py,sha256=ifGXlBYsWZ5hcK8uRLkM1HsG6l87NHiLsbbHlOmEaLc,31745
37
37
  model_compression_toolkit/core/common/graph/edge.py,sha256=buoSEUZwilWBK3WeBKpJ-GeDaUA1SDdOHxDpxU_bGpk,3784
38
- model_compression_toolkit/core/common/graph/functional_node.py,sha256=QpO9wjiYWuLzzy84Z6qRhVP6wlMrLnOTYCuNzNvJbNo,3958
38
+ model_compression_toolkit/core/common/graph/functional_node.py,sha256=GH5wStmw8SoAj5IdT_-ItN1Meo_P5NUTt_5bgJC4fak,3935
39
39
  model_compression_toolkit/core/common/graph/graph_matchers.py,sha256=CrDoHYq4iPaflgJWmoJ1K4ziLrRogJvFTVWg8P0UcDU,4744
40
40
  model_compression_toolkit/core/common/graph/graph_searches.py,sha256=2oKuW6L8hP-oL0lFO9PhQFt9fEFgVJwpc1u4fHExAtE,5128
41
41
  model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py,sha256=3el-A7j1oyoo1_9zq3faQp7IeRsFXFCvnrb3zZFXpU0,9803
@@ -559,8 +559,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
559
559
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
560
560
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
561
561
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
562
- mct_nightly-2.2.0.20241130.524.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
563
- mct_nightly-2.2.0.20241130.524.dist-info/METADATA,sha256=jtCfVPD98K-euNbka3YQyBwFqyQggoypKX1DH2bhf4w,26446
564
- mct_nightly-2.2.0.20241130.524.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
565
- mct_nightly-2.2.0.20241130.524.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
566
- mct_nightly-2.2.0.20241130.524.dist-info/RECORD,,
562
+ mct_nightly-2.2.0.20241202.537.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
563
+ mct_nightly-2.2.0.20241202.537.dist-info/METADATA,sha256=RA9ZikMjj3uVzhEnwKNVYW1gFaW7UYB6gB0GtsQ2Yw4,26446
564
+ mct_nightly-2.2.0.20241202.537.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
565
+ mct_nightly-2.2.0.20241202.537.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
566
+ mct_nightly-2.2.0.20241202.537.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241130.000524"
30
+ __version__ = "2.2.0.20241202.000537"
@@ -556,9 +556,10 @@ class BaseNode:
556
556
  # Extract qco with is_match_type to overcome mismatch of function types in TF 2.15
557
557
  matching_qcos = [_qco for _type, _qco in tpc.layer2qco.items() if self.is_match_type(_type)]
558
558
  if matching_qcos:
559
- if len(matching_qcos) > 1:
560
- Logger.error('Found duplicate qco types!')
561
- return matching_qcos[0]
559
+ if all([_qco == matching_qcos[0] for _qco in matching_qcos]):
560
+ return matching_qcos[0]
561
+ else:
562
+ Logger.critical(f"Found duplicate qco types for node '{self.name}' of type '{self.type}'!") # pragma: no cover
562
563
  return tpc.tp_model.default_qco
563
564
 
564
565
  def filter_node_qco_by_graph(self, tpc: TargetPlatformCapabilities,
@@ -85,5 +85,5 @@ class FunctionalNode(BaseNode):
85
85
  Whether _type matches the self node type
86
86
 
87
87
  """
88
- names_match = _type.__name__ == self.type.__name__ if FOUND_TF else False
88
+ names_match = _type.__name__ == self.type.__name__
89
89
  return super().is_match_type(_type) or names_match