mct-nightly 2.2.0.20241126.528__py3-none-any.whl → 2.2.0.20241127.529__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.2.0.20241126.528.dist-info → mct_nightly-2.2.0.20241127.529.dist-info}/METADATA +5 -2
- {mct_nightly-2.2.0.20241126.528.dist-info → mct_nightly-2.2.0.20241127.529.dist-info}/RECORD +6 -6
- model_compression_toolkit/__init__.py +1 -1
- {mct_nightly-2.2.0.20241126.528.dist-info → mct_nightly-2.2.0.20241127.529.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.2.0.20241126.528.dist-info → mct_nightly-2.2.0.20241127.529.dist-info}/WHEEL +0 -0
- {mct_nightly-2.2.0.20241126.528.dist-info → mct_nightly-2.2.0.20241127.529.dist-info}/top_level.txt +0 -0
{mct_nightly-2.2.0.20241126.528.dist-info → mct_nightly-2.2.0.20241127.529.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.
|
3
|
+
Version: 2.2.0.20241127.529
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Home-page: UNKNOWN
|
6
6
|
License: UNKNOWN
|
@@ -119,6 +119,7 @@ ________________________________________________________________________________
|
|
119
119
|
__________________________________________________________________________________________________________
|
120
120
|
### Data-free quantization (Data Generation) [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
|
121
121
|
Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
|
122
|
+
The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
|
122
123
|
__________________________________________________________________________________________________________
|
123
124
|
### Structured Pruning [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
|
124
125
|
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)).
|
@@ -236,6 +237,8 @@ MCT is licensed under Apache License Version 2.0. By contributing to the project
|
|
236
237
|
|
237
238
|
[3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
|
238
239
|
|
239
|
-
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization
|
240
|
+
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
|
241
|
+
|
242
|
+
[5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://arxiv.org/abs/2410.22110)
|
240
243
|
|
241
244
|
|
{mct_nightly-2.2.0.20241126.528.dist-info → mct_nightly-2.2.0.20241127.529.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=TA9ze23Sb1Oe07ep1m1YS_g_HK4xeEFIaYjw126kAwI,1573
|
2
2
|
model_compression_toolkit/constants.py,sha256=i4wYheBkIdQmsQA-axIpcT3YiSO1USNc-jaNiNE8w6E,3920
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
|
@@ -559,8 +559,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
559
559
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
|
560
560
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
561
561
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
562
|
-
mct_nightly-2.2.0.
|
563
|
-
mct_nightly-2.2.0.
|
564
|
-
mct_nightly-2.2.0.
|
565
|
-
mct_nightly-2.2.0.
|
566
|
-
mct_nightly-2.2.0.
|
562
|
+
mct_nightly-2.2.0.20241127.529.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
563
|
+
mct_nightly-2.2.0.20241127.529.dist-info/METADATA,sha256=_BFXYbvbuoo6a7pXxnRT7YOIZO37P_0RyiGn-NXpMXA,26947
|
564
|
+
mct_nightly-2.2.0.20241127.529.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
565
|
+
mct_nightly-2.2.0.20241127.529.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
566
|
+
mct_nightly-2.2.0.20241127.529.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20241127.000529"
|
{mct_nightly-2.2.0.20241126.528.dist-info → mct_nightly-2.2.0.20241127.529.dist-info}/LICENSE.md
RENAMED
File without changes
|
File without changes
|
{mct_nightly-2.2.0.20241126.528.dist-info → mct_nightly-2.2.0.20241127.529.dist-info}/top_level.txt
RENAMED
File without changes
|