mct-nightly 2.2.0.20241114.506__py3-none-any.whl → 2.2.0.20241115.526__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241114.506
3
+ Version: 2.2.0.20241115.526
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -25,69 +25,105 @@ Requires-Dist: scipy
25
25
  Requires-Dist: protobuf
26
26
  Requires-Dist: mct-quantizers==1.5.2
27
27
 
28
- # Model Compression Toolkit (MCT)
28
+ <div align="center" markdown="1">
29
+ <p>
30
+ <a href="https://sony.github.io/model_optimization/" target="_blank">
31
+ <img src="/docsrc/images/mctHeader-cropped.svg" width="1000"></a>
32
+ </p>
33
+
34
+ ______________________________________________________________________
35
+
36
+ </div>
37
+ <div align="center">
38
+ <p align="center">
39
+ <a href="#getting-started">Getting Started</a> •
40
+ <a href="#tutorials-and-examples">Tutorials</a> •
41
+ <a href="#supported-features">High level features and techniques</a> •
42
+ <a href="#resources">Resources</a> •
43
+ <a href="#contributions">Community</a> •
44
+ <a href="#license">License</a>
45
+ </p>
46
+ <p align="center">
47
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.1%20%7C%202.2%20%7C%202.3-blue" /></a>
48
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/TensorFlow-2.12%20%7C%202.13%20%7C%202.14%20%7C%202.15-blue" /></a>
49
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
50
+ <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
51
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
52
+
53
+ </p>
54
+ </div>
55
+
56
+ __________________________________________________________________________________________________________
29
57
 
30
- Model Compression Toolkit (MCT) is an open-source project for neural network model optimization under efficient, constrained hardware.
31
-
32
- This project provides researchers, developers, and engineers tools for optimizing and deploying state-of-the-art neural networks on efficient hardware.
33
-
34
- Specifically, this project aims to apply quantization to compress neural networks.
58
+ ## Getting Started
59
+ ### Quick Installation
60
+ Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
61
+ ```
62
+ pip install model-compression-toolkit
63
+ ```
64
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
35
65
 
36
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
66
+ **Important note**: In order to use MCT, you’ll need to provide a floating point .pt or .keras model as an input.
37
67
 
38
- MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
68
+ ### Tutorials and Examples
39
69
 
70
+ Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
71
+ Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
40
72
 
73
+ ### Supported Quantization Methods</div>
74
+ MCT supports various quantization methods as appears below.
75
+ <div align="center">
76
+ <p align="center">
41
77
 
42
- ## Table of Contents
78
+ Quantization Method | Complexity | Computational Cost | Tutorial
79
+ -------------------- | -----------|--------------------|---------
80
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
81
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
82
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
43
83
 
44
- - [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
45
- - [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
46
- - [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
47
- - [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
48
- - [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
49
- - [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
84
+ </p>
85
+ </div>
50
86
 
87
+ For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
88
+ For further details, please see [Supported features and algorithms](#supported-features).
51
89
 
52
- ## Getting Started
90
+ Required input:
91
+ - Floating point model - 32bit model in either .pt or .keras format
92
+ - Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
53
93
 
54
- This section provides an installation and a quick starting guide.
94
+ <div align="center">
95
+ <p align="center">
55
96
 
56
- ### Installation
97
+ <img src="/docsrc/images/mctDiagram_clean.svg" width="800">
98
+ </p>
99
+ </div>
57
100
 
58
- To install the latest stable release of MCT, run the following command:
59
- ```
60
- pip install model-compression-toolkit
61
- ```
101
+ ### Resources
102
+ * [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
62
103
 
63
- For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
104
+ * MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
64
105
 
106
+ * [Post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#ptq) | PTQ API docs
107
+ * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#gptq) | GPTQ API docs
108
+ * [Quantization-aware training](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | QAT API docs
65
109
 
66
- ### Quick start & tutorials
110
+ * [Debug](https://sony.github.io/model_optimization/docs/guidelines/visualization.html) modify optimization process or generate explainable report
67
111
 
68
- Explore the Model Compression Toolkit (MCT) through our tutorials,
69
- covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
70
- for hands-on learning. For example:
71
- * [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
72
- * [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb)
73
- * [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
112
+ * [Release notes](https://github.com/sony/model_optimization/releases)
74
113
 
75
114
 
76
115
  ### Supported Versions
77
116
 
78
117
  Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
118
+ <details id="supported-versions">
119
+ <summary>Supported Versions Table</summary>
79
120
 
80
-
81
- | | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
82
- |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
83
- | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
84
- | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
85
- | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
86
- | Python 3.12 | | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
87
-
88
-
89
-
90
-
121
+ | | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
122
+ |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
123
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
124
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
125
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
126
+ | Python 3.12 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
91
127
 
92
128
  | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
93
129
  |-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
@@ -95,6 +131,7 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
95
131
  | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
96
132
  | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
97
133
 
134
+ </details>
98
135
 
99
136
  ## Supported Features
100
137
  MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
@@ -112,9 +149,9 @@ MCT supports different quantization methods:
112
149
 
113
150
  | Quantization Method | Complexity | Computational Cost |
114
151
  |-----------------------------------------------|------------|-----------------------------|
115
- | PTQ | Low | Low (order of minutes) |
116
- | GPTQ (parameters fine-tuning using gradients) | Mild | Mild (order of 2-3 hours) |
117
- | QAT | High | High (order of 12-36 hours) |
152
+ | PTQ | Low | Low (~CPU minutes) |
153
+ | GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
154
+ | QAT | High | High (~12-36 GPU hours) |
118
155
 
119
156
 
120
157
  In addition, MCT supports different quantization schemes for quantizing weights and activations:
@@ -160,15 +197,14 @@ For more details, we highly recommend visiting our project website where experim
160
197
 
161
198
 
162
199
  ## Results
163
- ### Keras
164
- Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
165
- single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
166
200
 
167
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
168
-
169
- For more results, please see [1]
201
+ <p align="center">
202
+ <img src="/docsrc/images/Classification.png" width="225">
203
+ <img src="/docsrc/images/SemSeg.png" width="225">
204
+ <img src="/docsrc/images/PoseEst.png" width="225">
205
+ <img src="/docsrc/images/ObjDet.png" width="225">
170
206
 
171
- ### Pytorch
207
+ ### Pytorch
172
208
  We quantized classification networks from the torchvision library.
173
209
  In the following table we present the ImageNet validation results for these models:
174
210
 
@@ -178,6 +214,14 @@ In the following table we present the ImageNet validation results for these mode
178
214
  | ResNet-18 [3] | 69.86 | 69.63 |69.53|
179
215
  | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
180
216
 
217
+ ### Keras
218
+ MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
219
+ Below is a graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights (X-axis), using
220
+ single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
221
+
222
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
223
+
224
+ For more results, please see [1]
181
225
 
182
226
  #### Pruning Results
183
227
 
@@ -188,23 +232,26 @@ Results for applying pruning to reduce the parameters of the following models by
188
232
  | ResNet50 [2] | 75.1 | 72.4 |
189
233
  | DenseNet121 [3] | 74.44 | 71.71 |
190
234
 
235
+ ## Troubleshooting and Community
191
236
 
192
- ## Trouble Shooting
237
+ If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
238
+ for common pitfalls and some tools to improve quantized model's accuracy.
193
239
 
194
- If the accuracy degradation of the quantized model is too large for your application, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
195
- for common pitfalls and some tools to improve quantization accuracy.
240
+ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
196
241
 
197
- Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
242
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
198
243
 
199
244
 
200
245
  ## Contributions
201
246
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
202
247
 
203
- *You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
248
+ *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
204
249
 
205
250
 
206
251
  ## License
207
- [Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
252
+ MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
253
+
254
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
208
255
 
209
256
  ## References
210
257
 
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=xer5tZK52rNFMfm_0vAAVuT_UHbRnB2d7BKFFTrrKjw,1573
1
+ model_compression_toolkit/__init__.py,sha256=xJnRG_pdeNDYklohqX1vGwnTRflWUJChhOC0BYHv7FA,1573
2
2
  model_compression_toolkit/constants.py,sha256=i4wYheBkIdQmsQA-axIpcT3YiSO1USNc-jaNiNE8w6E,3920
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -558,8 +558,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
558
558
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
559
559
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
560
560
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
561
- mct_nightly-2.2.0.20241114.506.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
562
- mct_nightly-2.2.0.20241114.506.dist-info/METADATA,sha256=Kdzp0ipRZ8Ewsvdbsu_suZuodE85WeOXdeNcM8VdW1o,22938
563
- mct_nightly-2.2.0.20241114.506.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
564
- mct_nightly-2.2.0.20241114.506.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
565
- mct_nightly-2.2.0.20241114.506.dist-info/RECORD,,
561
+ mct_nightly-2.2.0.20241115.526.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
562
+ mct_nightly-2.2.0.20241115.526.dist-info/METADATA,sha256=34MNi8uWuXHKhogrWH98eeOKr1z8yka4dDR9ethdHzk,26007
563
+ mct_nightly-2.2.0.20241115.526.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
564
+ mct_nightly-2.2.0.20241115.526.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
565
+ mct_nightly-2.2.0.20241115.526.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241114.000506"
30
+ __version__ = "2.2.0.20241115.000526"