mct-nightly 2.2.0.20241113.521__py3-none-any.whl → 2.2.0.20241115.526__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241113.521
3
+ Version: 2.2.0.20241115.526
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -25,73 +25,113 @@ Requires-Dist: scipy
25
25
  Requires-Dist: protobuf
26
26
  Requires-Dist: mct-quantizers==1.5.2
27
27
 
28
- # Model Compression Toolkit (MCT)
28
+ <div align="center" markdown="1">
29
+ <p>
30
+ <a href="https://sony.github.io/model_optimization/" target="_blank">
31
+ <img src="/docsrc/images/mctHeader-cropped.svg" width="1000"></a>
32
+ </p>
33
+
34
+ ______________________________________________________________________
35
+
36
+ </div>
37
+ <div align="center">
38
+ <p align="center">
39
+ <a href="#getting-started">Getting Started</a> •
40
+ <a href="#tutorials-and-examples">Tutorials</a> •
41
+ <a href="#supported-features">High level features and techniques</a> •
42
+ <a href="#resources">Resources</a> •
43
+ <a href="#contributions">Community</a> •
44
+ <a href="#license">License</a>
45
+ </p>
46
+ <p align="center">
47
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.1%20%7C%202.2%20%7C%202.3-blue" /></a>
48
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/TensorFlow-2.12%20%7C%202.13%20%7C%202.14%20%7C%202.15-blue" /></a>
49
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
50
+ <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
51
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
52
+
53
+ </p>
54
+ </div>
55
+
56
+ __________________________________________________________________________________________________________
29
57
 
30
- Model Compression Toolkit (MCT) is an open-source project for neural network model optimization under efficient, constrained hardware.
31
-
32
- This project provides researchers, developers, and engineers tools for optimizing and deploying state-of-the-art neural networks on efficient hardware.
33
-
34
- Specifically, this project aims to apply quantization to compress neural networks.
58
+ ## Getting Started
59
+ ### Quick Installation
60
+ Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
61
+ ```
62
+ pip install model-compression-toolkit
63
+ ```
64
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
35
65
 
36
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
66
+ **Important note**: In order to use MCT, you’ll need to provide a floating point .pt or .keras model as an input.
37
67
 
38
- MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
68
+ ### Tutorials and Examples
39
69
 
70
+ Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
71
+ Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
40
72
 
73
+ ### Supported Quantization Methods</div>
74
+ MCT supports various quantization methods as appears below.
75
+ <div align="center">
76
+ <p align="center">
41
77
 
42
- ## Table of Contents
78
+ Quantization Method | Complexity | Computational Cost | Tutorial
79
+ -------------------- | -----------|--------------------|---------
80
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
81
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
82
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
43
83
 
44
- - [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
45
- - [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
46
- - [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
47
- - [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
48
- - [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
49
- - [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
84
+ </p>
85
+ </div>
50
86
 
87
+ For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
88
+ For further details, please see [Supported features and algorithms](#supported-features).
51
89
 
52
- ## Getting Started
90
+ Required input:
91
+ - Floating point model - 32bit model in either .pt or .keras format
92
+ - Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
53
93
 
54
- This section provides an installation and a quick starting guide.
94
+ <div align="center">
95
+ <p align="center">
55
96
 
56
- ### Installation
97
+ <img src="/docsrc/images/mctDiagram_clean.svg" width="800">
98
+ </p>
99
+ </div>
57
100
 
58
- To install the latest stable release of MCT, run the following command:
59
- ```
60
- pip install model-compression-toolkit
61
- ```
101
+ ### Resources
102
+ * [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
62
103
 
63
- For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
104
+ * MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
64
105
 
106
+ * [Post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#ptq) | PTQ API docs
107
+ * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#gptq) | GPTQ API docs
108
+ * [Quantization-aware training](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | QAT API docs
65
109
 
66
- ### Quick start & tutorials
110
+ * [Debug](https://sony.github.io/model_optimization/docs/guidelines/visualization.html) modify optimization process or generate explainable report
67
111
 
68
- Explore the Model Compression Toolkit (MCT) through our tutorials,
69
- covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
70
- for hands-on learning. For example:
71
- * [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
72
- * [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb)
73
- * [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
112
+ * [Release notes](https://github.com/sony/model_optimization/releases)
74
113
 
75
114
 
76
115
  ### Supported Versions
77
116
 
78
117
  Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
79
-
80
-
81
- | | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 |
82
- |-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
83
- | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) |
84
- | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) |
85
- | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) |
86
-
87
-
88
-
89
- | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
90
- |-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
118
+ <details id="supported-versions">
119
+ <summary>Supported Versions Table</summary>
120
+
121
+ | | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
122
+ |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
123
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
124
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
125
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
126
+ | Python 3.12 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
127
+
128
+ | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
129
+ |-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
91
130
  | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml) |
92
131
  | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
93
132
  | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
94
133
 
134
+ </details>
95
135
 
96
136
  ## Supported Features
97
137
  MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
@@ -109,9 +149,9 @@ MCT supports different quantization methods:
109
149
 
110
150
  | Quantization Method | Complexity | Computational Cost |
111
151
  |-----------------------------------------------|------------|-----------------------------|
112
- | PTQ | Low | Low (order of minutes) |
113
- | GPTQ (parameters fine-tuning using gradients) | Mild | Mild (order of 2-3 hours) |
114
- | QAT | High | High (order of 12-36 hours) |
152
+ | PTQ | Low | Low (~CPU minutes) |
153
+ | GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
154
+ | QAT | High | High (~12-36 GPU hours) |
115
155
 
116
156
 
117
157
  In addition, MCT supports different quantization schemes for quantizing weights and activations:
@@ -157,15 +197,14 @@ For more details, we highly recommend visiting our project website where experim
157
197
 
158
198
 
159
199
  ## Results
160
- ### Keras
161
- Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
162
- single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
163
200
 
164
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
165
-
166
- For more results, please see [1]
201
+ <p align="center">
202
+ <img src="/docsrc/images/Classification.png" width="225">
203
+ <img src="/docsrc/images/SemSeg.png" width="225">
204
+ <img src="/docsrc/images/PoseEst.png" width="225">
205
+ <img src="/docsrc/images/ObjDet.png" width="225">
167
206
 
168
- ### Pytorch
207
+ ### Pytorch
169
208
  We quantized classification networks from the torchvision library.
170
209
  In the following table we present the ImageNet validation results for these models:
171
210
 
@@ -175,6 +214,14 @@ In the following table we present the ImageNet validation results for these mode
175
214
  | ResNet-18 [3] | 69.86 | 69.63 |69.53|
176
215
  | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
177
216
 
217
+ ### Keras
218
+ MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
219
+ Below is a graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights (X-axis), using
220
+ single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
221
+
222
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
223
+
224
+ For more results, please see [1]
178
225
 
179
226
  #### Pruning Results
180
227
 
@@ -185,23 +232,26 @@ Results for applying pruning to reduce the parameters of the following models by
185
232
  | ResNet50 [2] | 75.1 | 72.4 |
186
233
  | DenseNet121 [3] | 74.44 | 71.71 |
187
234
 
235
+ ## Troubleshooting and Community
188
236
 
189
- ## Trouble Shooting
237
+ If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
238
+ for common pitfalls and some tools to improve quantized model's accuracy.
190
239
 
191
- If the accuracy degradation of the quantized model is too large for your application, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
192
- for common pitfalls and some tools to improve quantization accuracy.
240
+ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
193
241
 
194
- Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
242
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
195
243
 
196
244
 
197
245
  ## Contributions
198
246
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
199
247
 
200
- *You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
248
+ *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
201
249
 
202
250
 
203
251
  ## License
204
- [Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
252
+ MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
253
+
254
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
205
255
 
206
256
  ## References
207
257
 
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=FqZ6XbAbgDSAhK2i7UqlDeDmXsSUCvu0RyBhUeMPDp0,1573
1
+ model_compression_toolkit/__init__.py,sha256=xJnRG_pdeNDYklohqX1vGwnTRflWUJChhOC0BYHv7FA,1573
2
2
  model_compression_toolkit/constants.py,sha256=i4wYheBkIdQmsQA-axIpcT3YiSO1USNc-jaNiNE8w6E,3920
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -558,8 +558,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
558
558
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
559
559
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
560
560
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
561
- mct_nightly-2.2.0.20241113.521.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
562
- mct_nightly-2.2.0.20241113.521.dist-info/METADATA,sha256=vVYCluqgh4ApdcolpQzjr1vaNDLvkAqWpZAYn6kLz3I,20830
563
- mct_nightly-2.2.0.20241113.521.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
564
- mct_nightly-2.2.0.20241113.521.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
565
- mct_nightly-2.2.0.20241113.521.dist-info/RECORD,,
561
+ mct_nightly-2.2.0.20241115.526.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
562
+ mct_nightly-2.2.0.20241115.526.dist-info/METADATA,sha256=34MNi8uWuXHKhogrWH98eeOKr1z8yka4dDR9ethdHzk,26007
563
+ mct_nightly-2.2.0.20241115.526.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
564
+ mct_nightly-2.2.0.20241115.526.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
565
+ mct_nightly-2.2.0.20241115.526.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241113.000521"
30
+ __version__ = "2.2.0.20241115.000526"