mct-nightly 2.2.0.20240917.426__py3-none-any.whl → 2.2.0.20240919.455__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. {mct_nightly-2.2.0.20240917.426.dist-info → mct_nightly-2.2.0.20240919.455.dist-info}/METADATA +1 -1
  2. {mct_nightly-2.2.0.20240917.426.dist-info → mct_nightly-2.2.0.20240919.455.dist-info}/RECORD +30 -20
  3. {mct_nightly-2.2.0.20240917.426.dist-info → mct_nightly-2.2.0.20240919.455.dist-info}/top_level.txt +1 -0
  4. model_compression_toolkit/__init__.py +1 -1
  5. model_compression_toolkit/core/common/graph/base_node.py +3 -0
  6. model_compression_toolkit/core/common/graph/functional_node.py +1 -1
  7. model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +1 -1
  8. model_compression_toolkit/core/keras/reader/node_builder.py +23 -1
  9. model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +5 -1
  10. model_compression_toolkit/core/pytorch/reader/graph_builders.py +13 -4
  11. model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +12 -3
  12. model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +10 -1
  13. model_compression_toolkit/gptq/__init__.py +17 -5
  14. model_compression_toolkit/gptq/common/gptq_config.py +88 -75
  15. model_compression_toolkit/gptq/pytorch/gptq_training.py +18 -9
  16. model_compression_toolkit/gptq/pytorch/quantization_facade.py +49 -29
  17. model_compression_toolkit/gptq/pytorch/quantizer/gradual_activation_quantization.py +80 -0
  18. model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +10 -10
  19. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +6 -49
  20. model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +39 -0
  21. model_compression_toolkit/trainable_infrastructure/pytorch/util.py +29 -0
  22. tests_pytest/__init__.py +14 -0
  23. tests_pytest/pytorch/__init__.py +14 -0
  24. tests_pytest/pytorch/gptq/__init__.py +14 -0
  25. tests_pytest/pytorch/gptq/test_annealing_cfg.py +40 -0
  26. tests_pytest/pytorch/gptq/test_gradual_act_quantization.py +100 -0
  27. tests_pytest/pytorch/trainable_infrastructure/__init__.py +14 -0
  28. tests_pytest/pytorch/trainable_infrastructure/test_linear_annealing.py +49 -0
  29. {mct_nightly-2.2.0.20240917.426.dist-info → mct_nightly-2.2.0.20240919.455.dist-info}/LICENSE.md +0 -0
  30. {mct_nightly-2.2.0.20240917.426.dist-info → mct_nightly-2.2.0.20240919.455.dist-info}/WHEEL +0 -0
@@ -0,0 +1,100 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from unittest.mock import Mock
16
+
17
+ import pytest
18
+ import torch
19
+
20
+ from model_compression_toolkit.core.pytorch.pytorch_device_config import get_working_device
21
+ from model_compression_toolkit.trainable_infrastructure.pytorch.annealing_schedulers import LinearAnnealingScheduler
22
+ from model_compression_toolkit.gptq import GradientPTQConfig, GradualActivationQuantizationConfig, QFractionLinearAnnealingConfig
23
+ from model_compression_toolkit.gptq.pytorch.quantizer.gradual_activation_quantization import (
24
+ GradualActivationQuantizerWrapper, get_gradual_activation_quantizer_wrapper_factory)
25
+
26
+
27
+ @pytest.fixture
28
+ def x():
29
+ return torch.randn((2, 5, 6, 7), generator=torch.Generator().manual_seed(42)).to(device=get_working_device())
30
+
31
+
32
+ class Quantizer:
33
+ def __call__(self, x, training):
34
+ self.training = training
35
+ return 3*x + 1
36
+
37
+
38
+ class TestGradualActivationQuantization:
39
+
40
+ def test_gradual_act_quant_wrapper(self, x):
41
+ quantizer = Quantizer()
42
+ qw = GradualActivationQuantizerWrapper(quantizer, q_fraction_scheduler=lambda t: t / (t + 1))
43
+
44
+ y0, y1, y2 = [qw(x) for _ in range(3)]
45
+ assert torch.equal(y0, x) # t=0
46
+ assert torch.allclose(y1, 0.5 * x + (1.5 * x + 0.5)) # t=1
47
+ assert torch.allclose(y2, x / 3 + (2 * x + 2 / 3)) # t=2
48
+ assert quantizer.training is True
49
+
50
+ _ = qw(x, False)
51
+ assert quantizer.training is False # correct flag was propagated
52
+
53
+ def test_factory_no_qdrop(self):
54
+ quantizer_wrapper, quantizer = self._run_factory_test(qdrop_cfg=None, get_grad_steps_fn=None)
55
+ assert quantizer_wrapper is quantizer
56
+
57
+ @pytest.mark.parametrize('end_step', (20, None))
58
+ def test_factory_linear(self, x, end_step):
59
+ qdrop_cfg = GradualActivationQuantizationConfig(
60
+ QFractionLinearAnnealingConfig(initial_q_fraction=0.3, target_q_fraction=0.8, start_step=10, end_step=end_step)
61
+ )
62
+
63
+ def get_total_steps():
64
+ if end_step is None:
65
+ return 50
66
+ assert False # should not be called if end_step is passed
67
+
68
+ quantizer_wrapper, quantizer = self._run_factory_test(qdrop_cfg, get_total_steps)
69
+
70
+ scheduler = quantizer_wrapper.q_fraction_scheduler
71
+ assert isinstance(scheduler, LinearAnnealingScheduler)
72
+ exp_end_step = 50 if end_step is None else end_step
73
+ assert scheduler.t_start == 10
74
+ assert scheduler.t_end == exp_end_step
75
+ assert scheduler.initial_val == 0.3
76
+ assert scheduler.target_val == 0.8
77
+
78
+ y = [quantizer_wrapper(x) for _ in range(exp_end_step+1)]
79
+ assert torch.allclose(y[9], 0.7 * x + 0.3 * quantizer(x, True))
80
+ assert torch.allclose(y[10], 0.7 * x + 0.3 * quantizer(x, True))
81
+ assert torch.allclose(y[-1], 0.2 * x + 0.8 * quantizer(x, True))
82
+
83
+ def test_factory_linear_common_case(self, x):
84
+ # validate that we actually implemented the right thing - on first call float input, on last call fully quantized
85
+ qdrop_cfg = GradualActivationQuantizationConfig(
86
+ QFractionLinearAnnealingConfig(initial_q_fraction=0, target_q_fraction=1, start_step=0, end_step=None)
87
+ )
88
+ quantizer_wrapper, quantizer = self._run_factory_test(qdrop_cfg, lambda: 15)
89
+ y0, *_, y_last = [quantizer_wrapper(x) for _ in range(16)]
90
+ assert torch.equal(y0, x)
91
+ assert torch.allclose(y_last, quantizer(x, True))
92
+
93
+ def _run_factory_test(self, qdrop_cfg, get_grad_steps_fn):
94
+ # Mocks are used to just pass anything
95
+ gptq_cfg = GradientPTQConfig(n_epochs=5, optimizer=Mock(), loss=Mock(),
96
+ gradual_activation_quantization_config=qdrop_cfg)
97
+ factory = get_gradual_activation_quantizer_wrapper_factory(gptq_cfg, get_grad_steps_fn)
98
+ quantizer = Quantizer()
99
+ quantizer_wrapper = factory(quantizer)
100
+ return quantizer_wrapper, quantizer
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
@@ -0,0 +1,49 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ import torch
16
+ import pytest
17
+
18
+ from model_compression_toolkit.trainable_infrastructure.pytorch.annealing_schedulers import LinearAnnealingScheduler
19
+
20
+
21
+ def test_linear_annealing():
22
+ scheduler = LinearAnnealingScheduler(t_start=10, t_end=35, initial_val=3.4, target_val=-1.6)
23
+ for t in [0, 9, 10]:
24
+ assert _isclose(scheduler(t), 3.4)
25
+
26
+ for t in [35, 36, 1000]:
27
+ assert _isclose(scheduler(t), -1.6)
28
+
29
+ assert _isclose(scheduler(11), 3.2)
30
+ assert _isclose(scheduler(27), 0.)
31
+ assert _isclose(scheduler(34), -1.4)
32
+
33
+
34
+ def test_linear_annealing_ascending():
35
+ scheduler = LinearAnnealingScheduler(t_start=0, t_end=5, initial_val=-0.5, target_val=1.5)
36
+ assert _isclose(scheduler(0), -0.5)
37
+ assert _isclose(scheduler(1), -0.1)
38
+ assert _isclose(scheduler(4), 1.1)
39
+ assert _isclose(scheduler(5), 1.5)
40
+
41
+
42
+ @pytest.mark.parametrize('start', [5, -1])
43
+ def test_invalid(start):
44
+ with pytest.raises(ValueError):
45
+ LinearAnnealingScheduler(t_start=start, t_end=4, initial_val=1, target_val=0)
46
+
47
+
48
+ def _isclose(x, y):
49
+ return torch.isclose(x, torch.tensor(y))