mct-nightly 2.1.0.20240815.452__py3-none-any.whl → 2.1.0.20240817.425__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240815.452
3
+ Version: 2.1.0.20240817.425
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=R0Zwbt0JpEgVMFa8F2SnrHQ0xhwmPSq0tvWkS53l3eI,1573
1
+ model_compression_toolkit/__init__.py,sha256=nDLRJFq1P7Wds2DooLe_1huuBJrmZARIDKbMvC2_z3o,1573
2
2
  model_compression_toolkit/constants.py,sha256=i4wYheBkIdQmsQA-axIpcT3YiSO1USNc-jaNiNE8w6E,3920
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -173,7 +173,7 @@ model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm
173
173
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py,sha256=GR1a3mCZpNUu4WxixJXF_aSm57phAdxaRoHecNx3hxw,3168
174
174
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py,sha256=5df_xGfXkqNub4xVRnCWQvSohWqdv12axjJ6edVU2H0,2478
175
175
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py,sha256=Hl4LEQ_bw_Vpmf3ZqHujYUqVdvTNsPlEMvr9dZhwg2U,2806
176
- model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py,sha256=K2svZ8xKK6LAnV86556AwIKnvIjcEqXjJicjp7KC-zY,11132
176
+ model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py,sha256=sf4nrcQckDlvfA1CNXCXcp35vHO-TVPrc9tXK2vDV6I,11198
177
177
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py,sha256=R3U7cjc2E0zheMem16GHygp5jZFGSaomkNOTxTjcAgw,5794
178
178
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py,sha256=V6hp67CkS_A3WqdsjLjs0ETtdZAOo4P9mhy4aT7W5FE,5940
179
179
  model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py,sha256=AvquvVVVT8-ioeVn-gjqysK4L41L3I7TlNOEDfWjViY,8185
@@ -531,8 +531,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
531
531
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
532
532
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
533
533
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
534
- mct_nightly-2.1.0.20240815.452.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
535
- mct_nightly-2.1.0.20240815.452.dist-info/METADATA,sha256=sRuvfW9Die83_at1NPFhuX1I9FZcyEEHNc38yC11mWg,19718
536
- mct_nightly-2.1.0.20240815.452.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
537
- mct_nightly-2.1.0.20240815.452.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
538
- mct_nightly-2.1.0.20240815.452.dist-info/RECORD,,
534
+ mct_nightly-2.1.0.20240817.425.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
535
+ mct_nightly-2.1.0.20240817.425.dist-info/METADATA,sha256=NrEMsF4QpIRBAsuzhnmO5xk6VITzV_UlhAXBdn-4cvE,19718
536
+ mct_nightly-2.1.0.20240817.425.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
537
+ mct_nightly-2.1.0.20240817.425.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
538
+ mct_nightly-2.1.0.20240817.425.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.1.0.20240815.000452"
30
+ __version__ = "2.1.0.20240817.000425"
@@ -29,7 +29,8 @@ from model_compression_toolkit.core.common.graph.functional_node import Function
29
29
  from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
30
30
  from model_compression_toolkit.constants import REUSE, REUSE_GROUP
31
31
  from model_compression_toolkit.core.keras.constants import KERNEL, BIAS, USE_BIAS, FILTERS, PADDING, \
32
- KERNEL_SIZE, DEPTH_MULTIPLIER, STRIDES, DILATIONS, DILATION_RATE, DEPTHWISE_KERNEL, RATE
32
+ KERNEL_SIZE, DEPTH_MULTIPLIER, STRIDES, DILATIONS, DILATION_RATE, DEPTHWISE_KERNEL, RATE, \
33
+ ACTIVATION, LINEAR
33
34
 
34
35
 
35
36
  def extract_bias_node_data(_node: FunctionalNode, _graph: Graph) -> np.ndarray:
@@ -132,7 +133,7 @@ class Conv2dFuncToConv2dLayer(common.BaseSubstitution):
132
133
 
133
134
  weights = {KERNEL: k}
134
135
  # Create Conv2D layer attributes.
135
- conv_fw_attr = {FILTERS: k.shape[3], KERNEL_SIZE: k.shape[:2]}
136
+ conv_fw_attr = {FILTERS: k.shape[3], KERNEL_SIZE: k.shape[:2], ACTIVATION: LINEAR}
136
137
  if len(conv_func_node.op_call_args) > 0:
137
138
  Logger.critical(f"node {conv_func_node.name} expected to have only kwargs but got args={conv_func_node.op_call_args}.") # pragma: no cover
138
139
  if STRIDES in conv_func_node.op_call_kwargs:
@@ -209,7 +210,7 @@ class DwConv2dFuncToDwConv2dLayer(common.BaseSubstitution):
209
210
 
210
211
  weights = {DEPTHWISE_KERNEL: k}
211
212
  k_shape = k.shape
212
- conv_fw_attr = {DEPTH_MULTIPLIER: k_shape[3], KERNEL_SIZE: k_shape[:2]}
213
+ conv_fw_attr = {DEPTH_MULTIPLIER: k_shape[3], KERNEL_SIZE: k_shape[:2], ACTIVATION: LINEAR}
213
214
  if len(dwconv_func_node.op_call_args) > 0:
214
215
  Logger.critical(f"node {dwconv_func_node.name} expected to have only kwargs but got args={dwconv_func_node.op_call_args}.") # pragma: no cover
215
216
  if STRIDES in dwconv_func_node.op_call_kwargs: