mct-nightly 2.1.0.20240813.135859__py3-none-any.whl → 2.1.0.20240813.141729__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.1.0.20240813.135859
3
+ Version: 2.1.0.20240813.141729
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=H0N0NPHx0iBk8p7iU9CN4l8cMWW28GThyz8IHeo8QjU,1573
1
+ model_compression_toolkit/__init__.py,sha256=4Ah8Ywj3HTi7gOBoXzHjZ7FBnpJqziSb4iuxGWzX9R8,1573
2
2
  model_compression_toolkit/constants.py,sha256=i4wYheBkIdQmsQA-axIpcT3YiSO1USNc-jaNiNE8w6E,3920
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -512,7 +512,7 @@ model_compression_toolkit/xquant/common/model_analyzer.py,sha256=T_8OetIQNqR0nkf
512
512
  model_compression_toolkit/xquant/common/model_folding_utils.py,sha256=7XMNmsngJgCPVjsuMNt6g4hzhkviB45qUmNRe9jQE7g,4815
513
513
  model_compression_toolkit/xquant/common/similarity_calculator.py,sha256=yCs_vlOThLzq7z-u2PkcEErLj7N7qCBPpRa6_5h34J8,10460
514
514
  model_compression_toolkit/xquant/common/similarity_functions.py,sha256=Atah1otdX9oUUch2JK-p-e291QHtkP_c4DfLG9WWo1Y,2935
515
- model_compression_toolkit/xquant/common/tensorboard_utils.py,sha256=85ABGQGKPZzctyZCHLazK0GxZ2ZUtQA3hZ_9fPiuMs0,6533
515
+ model_compression_toolkit/xquant/common/tensorboard_utils.py,sha256=6ZDbGHnCzSxJicWoS60GBd5HTfZuBBw1HkM7rj3Ki5w,6610
516
516
  model_compression_toolkit/xquant/common/xquant_config.py,sha256=Qt56cra2tU1PeHlLx_Cqztf5q-ED8MPelhb8coSumFw,1675
517
517
  model_compression_toolkit/xquant/keras/__init__.py,sha256=zbtceCVRsi-Gvl_pOmq5laqVqu55vAU1ie2FR2RK1Po,709
518
518
  model_compression_toolkit/xquant/keras/dataset_utils.py,sha256=quvVymhvpcPIOneCu5J6K_QAqBHOCIj8IxZxSN2fItA,2258
@@ -528,8 +528,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
528
528
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
529
529
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
530
530
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
531
- mct_nightly-2.1.0.20240813.135859.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
532
- mct_nightly-2.1.0.20240813.135859.dist-info/METADATA,sha256=FFcLCn7P4G8bVCT1qw_bOqHuRysEutjenTdGbuY2Wa4,19721
533
- mct_nightly-2.1.0.20240813.135859.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
534
- mct_nightly-2.1.0.20240813.135859.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
535
- mct_nightly-2.1.0.20240813.135859.dist-info/RECORD,,
531
+ mct_nightly-2.1.0.20240813.141729.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
532
+ mct_nightly-2.1.0.20240813.141729.dist-info/METADATA,sha256=rKrCpumEkmoyMZLUBKH25qud3SqUEXdhHnBzP9nqdrE,19721
533
+ mct_nightly-2.1.0.20240813.141729.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
534
+ mct_nightly-2.1.0.20240813.141729.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
535
+ mct_nightly-2.1.0.20240813.141729.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.1.0.20240813.135859"
30
+ __version__ = "2.1.0.20240813.141729"
@@ -115,12 +115,14 @@ class TensorboardUtils:
115
115
  similarity_metrics (Dict[str, Dict[str, float]]): A dictionary containing similarity metrics between quantized and float models for both representative and validation datasets.
116
116
  quantized_model_metadata (Dict): Metadata from the quantized model.
117
117
  """
118
- # Add the computed max cut
119
- maxcut_str = f"MaxCut: {quantized_model_metadata['scheduling_info'][MAX_CUT]}"
120
- self.tb_writer.add_text(maxcut_str, MAX_CUT)
121
-
122
118
  # Add output similarity between quantized and float models on representative and validation datasets
123
119
  output_similarity_repr = f"Similarity Metrics on outputs using representative dataset: \n" + "\n".join([f"{key}: {value:.4f}" for key, value in similarity_metrics[OUTPUT_SIMILARITY_METRICS_REPR].items()])
124
120
  output_similarity_val = f"Similarity Metrics on outputs using validation dataset: \n" + "\n".join([f"{key}: {value:.4f}" for key, value in similarity_metrics[OUTPUT_SIMILARITY_METRICS_VAL].items()])
125
121
  self.tb_writer.add_text(output_similarity_repr, OUTPUT_SIMILARITY_METRICS_REPR)
126
122
  self.tb_writer.add_text(output_similarity_val, OUTPUT_SIMILARITY_METRICS_VAL)
123
+
124
+ # Add the max cut if it was computed
125
+ if 'scheduling_info' in quantized_model_metadata:
126
+ maxcut_str = f"MaxCut: {quantized_model_metadata['scheduling_info'][MAX_CUT]}"
127
+ self.tb_writer.add_text(maxcut_str, MAX_CUT)
128
+